
ISSN 1936-5330

Thomas R. Cook and Aaron Smalter Hall
September 2017
RWP 17-11
https://dx.doi.org/10.18651/RWP2017-11

Macroeconomic Indicator
Forecasting with Deep
Neural Networks

71b7ff9

Macroeconomic Indicator Forecasting with Deep

Neural Networks

Thomas R. Cook∗† Aaron Smalter Hall†‡

September 29, 2017

Abstract

Economic policymaking relies upon accurate forecasts of economic condi-

tions. Current methods for unconditional forecasting are dominated by inher-

ently linear models that exhibit model dependence and have high data demands.

We explore deep neural networks as an opportunity to improve upon forecast

accurac y with limited data and while remaining agnostic as to functional form.

We focus on predicting civilian unemployment using models based on four dif-

ferent neural network architectures. Each of these models outperforms bench-

mark models at short time horizons. One model, based on an Encoder Decoder

architecture outperforms benchmark models at every forecast horizon (up to

four quarters).

JEL Classifications: C45 C53 C14

1 Introduction

Macroeconomic forecasting methods have improved considerably over the last fifty

years1. Current methods are capable of generating relatively accurate forecasts of

∗Federal Reserve Bank of Kansas City Email: thomas.cook@kc.frb.org
†The views expressed in this article are those of the authors and do not necessarily reflect the

views of the Federal Reserve Bank of Kansas City or the Federal Reserve System.
‡Federal Reserve Bank of Kansas City Email: aaron.smalterhall@kc.frb.org
1Diebold, 1997.

1

71b7ff9

macroeconomic indicators. But these approaches bring a variety of undesirable prop-

erties, ranging from high sensitivity to model specification to high data requirements.

There is considerable room to advance the state of macroeconomic forecasting by

leveraging recent advancements in machine learning and neural networks.

Accordingly, we explore the use of neural networks in forecasting macroeconomic

indicators, focusing specifically on unemployment. The models we present improve on

the widely-cited SPF forecast in near-term prediction. Our best-performing model,

based on an encoder-decoder architecture, outperforms the Survey of Professional

Forecasters (SPF) at every forecast horizon. Additionally, our approach provides a

number of advantages that lay the groundwork for developing new and increasingly

accurate forecasts of unemployment and other economic indicators. The approach

provides good single-series performance and can incorporate novel data if desired.

Further, the approach is robust to network architecture (i.e. model specification).

1.1 Background: Extant Forecasting Approaches

The potential contribution of neural networks to forecasting is not entirely obvious

without a better understanding of the dominant forecasting paradigms and their

attendant challenges. Generally, approaches to macroeconomic forecasting can be

divided into two paradigms: structural and non-structural2.

Structural approaches to forecasting are those in which a theoretical model of the

economy is written down and used as the basis for forming an empirical forecast.

Put differently, it is an approach to forecasting in which economic theory guides the

specification of the forecasting model. This approach to forecasting is particularly

useful since it can be used to produce conditional forecasts – forecasts of macroeco-

nomic indicators in response to a particular change in policy or institutional structure.

Dynamic stochastic general equilibrium (DSGE) models dominate the contemporary

structural approach.

The neural network models we present in this paper are not suitable as a replace-

ment for structural models. It is worth noting, however, that neural networks are

universal function approximations. Though beyond the scope of this paper, we would

2Diebold, 1997.

2

71b7ff9

expect neural networks to prove useful in approximating DSGE model solutions3.

In contrast to structural models, non-structural approaches to forecasting are

those in which models or methods are chosen without explicit reliance on an underly-

ing economic model. Instead, non-structural approaches tend to focus on particular

properties of the data itself and the statistical models or methods that provide the

best forecast of the data. Non-structural approaches tend to forego causal inference

in exchange for predictive accuracy. Consequently, non-structural approaches are

suitable for unconditional forecasting but are not suitable for conditional forecast-

ing4. The models we present in this paper are suitable as a substitute for extant

non-structural forecasts.

1.1.1 Vector Autoregression

Vector autoregressive (VAR) type models are one of the most common types of mod-

els used in non-structural forecasting5. These types of models are particularly ap-

pealing since they require the researcher to impose relatively few assumptions about

the underlying data-generating process. Further, they allow for multiple series to

be incorporated into analysis (unlike more restrictive ARMA models) and can be

straightforwardly estimated using OLS/GLS procedures6.

Vector autoregressive models are limited in a few crucial ways. First, VAR models

are linear models. The estimation of a VAR model will not find or account for non-

linearities when using normal estimation techniques. It is possible, of course, to

explicitly model non-linearities but this requires that the researcher know precisely

which adjustments to make to the model. Detection and correction for non-linearities

increases in difficulty with the complexity of the model.

Second, and relatedly, VAR-type models are sensitive to proper specification. In

addition to the appropriate handling of non-linearities, researchers must decide how

many lags to include for each series, which series to include, how/whether to incor-

porate moving-average components, and how to accommodate cointegration, non-

3See Creel (2016) for some initial work in this area
4Lucas, 1976.
5Diebold, 1997; Pescatori and Zaman, 2011.
6see Sims, 1980

3

71b7ff9

stationarity, and so on. These decisions force the researcher to take strong positions

on the nature of the underlying data generating process. This is a problem because

researchers choose non-structural forecasting approaches explicitly to avoid taking

these types of positions.

1.1.2 Consensus Forecasting

Another popular type of non-structural forecast is the consensus forecast. Due to

the various ways that a researcher might construct a forecast, there is variation from

one researcher/company/agency’s forecast to another; some forecasts are overly op-

timistic while others are overly pessimistic. For a given macroeconomic indicator,

however, there is a tendency for the forecasts to cluster near the realized value. Con-

sensus forecasts take advantage of this by aggregating many forecasts and producing

a singular, aggregate, prediction. The central limitation of the consensus forecast, of

course, is its reliance upon the accuracy of the individual forecasts that inform it.

For our purposes, the consensus forecast is meaningful for two reasons. First, con-

sensus forecasts are useful as benchmarks for testing new forecasting methods. This is

obvious when one considers the consensus forecast as representative of the general ex-

pectation among experts. But consensus forecasts are also useful benchmarks because

they indicate a threshold for improving the accuracy of the consensus forecast itself.

Put more simply, the consensus forecast improves in accuracy when incorporating

new forecasts that are more accurate than the current consensus forecast.

Second, the SPF in particular, is meaningful because it reveals the extent of the

variance in forecasts of macroeconomic indicators. The extent of the variation is

indicative of uncertainty in the consensus forecast or, alternatively, imprecision in

the measure of the consensus forecast7. The variation in individual forecasts thus

serves as an additional, albeit informal, benchmark for evaluating new models.

7This follows if we view each individual forecast as a measure of a (latent) consensus-among
experts forecast

4

71b7ff9

2 Methods

To overcome the limitations of extant approaches to non-structural forecasting, we

present a new forecasting approach, based on neural networks. Neural networks were

originally developed in the 1950’s, but have experienced several cycles of development

and dormancy. Until the 2000’s, neural networks were primarily the focus of computer

science researchers.

Recent developments have led to the widespread application of neural networks

in many fields. A combination several factors is responsible for this. Biological

advancements in our understanding of neurons, and particularly the functioning of

the visual cortex, inspired innovations in the modeling and structure of contemporary

neural networks. Additional innovations have helped to improve the efficiency of

training, restrict overfitting, escape local minima and otherwise make model training8

a feasible task in applied settings. Advancements in computing technology such as the

increased availability of massive data stores, increases in access to massive compute

power via cloud service providers, and general advancements in the speed of computer

hardware have made training complex neural networks computationally feasible.

2.0.1 Neural Networks: Key Concepts

A comprehensive overview of neural networks is well beyond the scope of this paper9.

We are well served, however, by introducing some of the basic concepts of neural

networks before proceeding to the advanced architectures we test in this paper.

Neural networks were developed in a tradition similar to graphical models. That

is, instead of representing a model in an equation, or system of equations, models are

represented as directed graphs. Typically, information flows from inputs to a target

output through the structure of a graph. Graph nodes represent operations on the

data as it moves from input to output. Any graphical model can be represented as a

set of mathematical equations but the number and length of these equations increases

dramatically as the complexity of the model increases.

8In the literature on machine learning, model training is essentially synonymous with model
fitting or model estimation as used in the econometric literature

9Interested readers should consult Gurney (1997), Kriesel (2007) and the vast array of online
resources on this topic.

5

71b7ff9

We tend to talk about neural network models in a way that is slightly different than

the way we would ordinarily talk about an economic or forecasting model. Instead

of focusing on the specification of model equations, neural network researchers tend

to discuss model architectures. Architectures refer, generally, to the configuration of

nodes on the graph, the interconnections among those nodes, and the nature of the

operations preformed at each node.

The basic architecture upon which deep learning models are built is the percep-

tron10. A perceptron has three distinct sets of nodes: (1) a set of nodes representing

model inputs, (2) a set of computational nodes, and (3) a set of nodes representing

model outputs. We refer to each set as a layer. The defining feature of the perceptron

is that only one layer of computational neurons is used to transform inputs to target

outputs.

Figure 1: Precepteron Model Architecture

!1

!2

!0

f(
Pk

i=0 !ixt�i) x̂t+n

xt�1

xt

xt�2

xt�k

... !k

This figure provides a visual representation of a perceptron. As should be apparent, the model takes a linear
combination of weighted inputs and applies a transformation function to produce an estimated output. In
the case of this diagram, the inputs are k distributed lags of x and the estimated output is the value of x at
n-periods after time t

A simple perceptron (suitable for forecasting) is provided in graphical form in

Figure 1. It is notable that this model can also be represented in the familiar form:

x̂t+n = f(x(k)ω(k)) (1)

10See Minsky and Papert (1988) and Rosenblatt (1958) for foundational works in this area and
Rojas (2013) for a more introduction to the mechanics of perceptrons

6

71b7ff9

Where x is a vector of distributed lags (up to k-periods) of some macroeconomic

indicator of interest. And where ω is a corresponding vector of weights, which are

adjusted through the training process. The product of these two vectors yields a

linear combination of inputs, which is further transformed through some function f

to forecast the indicator at some prediction horizon n periods in the future.

Readers should note that the structure of this model essentially follows the struc-

ture of a GLM model. The neural network approach does not, however, employ

MLE (maximum likelihood estimation) for estimation. Instead, we rely on the back-

propagation training algorithm11, which is essentially nonparametric. Through the

training process, the model will identify which features and parameters(i.e. computa-

tional nodes) are relevant for prediction12. This enables us to be less selective about

what data we supply to a model and less concerned with how we should pre-process

that data13.

Perceptrons give rise to powerful modeling architectures when they are layered,

stacked or otherwise connected into massive network-model architectures. We explore

these below.

2.1 Architecture

We present four neural network models, each built on a different architecture. We

chose these architectures because they represent some of the most commonly used

architectures in the deep learning research. Further, we chose these specific architec-

tures because of their relationships to key aspects of time-series forecasting.

11Rumelhart, Hinton, and Williams, 1986.
12As identified by recent work, this amounts to implicit regularization. See Gao and Jojic (2016),

and relatedly, Ye (1998)
13Alternatively stated, we can provide the model with high complexity and many variables and

the model will, to some extent, self-regularize. Some variables will be ignored by the model and
some computational nodes will ‘die’, leaving only the relevant data for use by the trained model.

7

71b7ff9

2.1.1 Fully Connected Architecture

The first network architecture that we apply to forecasting unemployment is a feed

forward14, fully connected (FC) network. This is a type of neural network architecture

which consists, simply, of several stacked layers of computational nodes. Each layer

contains one or more perceptron-like nodes. The inputs to each node are the outputs

from each of the nodes in the preceding layer15. The essence of this architecture is

provided in Figure 2.

Figure 2: Fully Connected Architecture

...

xt�1

xt

xt�2

xt�k

xt+n

layer 1 layer 2 layer 3

Residual Connection

This is a stylized portrayal of a basic feed-forward, fully connected network. Each circle represents one
computational node and each computational layer consists of three computational nodes. A residual
connection indicates the combination of the original input with the output of layer 3.

Beyond the notable inclusion of additional computational layers, the fully-connected

architecture we test here includes a residual connection between the inputs and the

outputs from the final computational layer. In Figure 2 this is represented by the

line labeled “Residual Connection”. The node connecting the inputs to the outputs

from the last computational layer performs element-wise addition between the layer

outputs and the inputs. The addition of the residual connection is consistent with

14The model is feed-forward in the sense that data only moves in one direction through the model.
This is to be contrasted with the recurrent-based architectures discussed later (LSTM and encoder-
decoder architectures)

15It is precisely because every node in one layer is connected to every node in the subsequent layer
that we call this type of network fully connected

8

71b7ff9

recent developments in model architecture16.

Figure 2 portrays a stylized version of the model. In application, the model

contains far more layers. Further, in the model we test in this paper, we stack the

basic structure portrayed in Figure 2 (several fully connected layers and a residual

connection). In each stack, the number of number of nodes per fully-connected layer is

reduced. A more accurate illustration of the model, as tested is provided in Figure 3.

Figure 3: Feed Forward (fully-connected) model architecture

Input
Layer

Fully Connected
 Layers

Fully Connected
 Layers

Fully Connected
 Layers

Prediction

This figure portrays the model as tested. Each rectangle consists of a layer of neurons. Layers between
the input layer and the prediction layer consist of computational nodes. The size of the rectangles
are scaled to suggest the number of nodes in each layer. Moving from left to right, each layer of
computational nodes is smaller or equal in size to the layer that precedes it.

16He et al., 2015.

9

71b7ff9

2.1.2 Convolutional Neural Network

The second architecture we present is a convolutional neural network. Convolutional

networks are feed-forward in that data only moves in one direction through the net-

work. Their development arose with research on the use of neural networks for image

recognition. In a convolutional layer, each input to the layer is connected to only

a few computational nodes (unlike the fully-connected setting, where each input is

connected to every computational node). Conversely, each computational node only

receives inputs from a small, clustered set of the input nodes. Further, the weights on

inputs to the computational nodes are shared across all computational nodes in the

layer. If we conceive of the input data as an image, then the convolutional layer is a

sliding window across the data that filters for a specific pattern in the data. The con-

volutional architecture identifies which patterns maximize predictive accuracy and

searches for those patterns in the data17. A convolutional layer can apply several

filters concurrently. A stylized illustration of a convolutional layer in operation is

illustrated in Figure 4.

The convolutional model we build contains a few notable components. As with the

previous model, we stack several convolutional layers together. Between each stack,

we include residual connections. The layers in each stack are smaller than the layers

in the stack that precede it. The reduction in nodes between convolutional stacks

is accomplished by applying a max pool filter. After several stacks of convolutional

layers, we append stacks of fully connected layers. These stacks also contain residual

connections. Also, the layers in each fully connected stack have fewer nodes than the

preceding stack. The output from the final stack produces a prediction of the target

variable. A diagram of the convolutional model is provided in Figure 5.

17Cui, Chen, and Chen, 2016; Nouri, 2014.

10

71b7ff9

Figure 4: Stylized depiction of application of convolutional filters

{
Filter Output

(higher = closer match)

1

8

2

{
Filter Output

(higher = closer match)

9

0

1

The chart depicts the unemployment rate over the period 1998 to 2006. The red rectangles overlaid
on the chart at different points in time depict the movement of the convolutional kernel (i.e. the
sliding window) over the data. Callouts attached to each red rectangle depict several filters applied
by the convolutional layer. The output for each filter is a score indicating the extent to which the
data under the kernel matches the shape of a that particular filter. Under the first rectangle, the data
most closely matches U-shaped filter, while the data under the second rectangle most closely matches
the inverted U-shaped filter.

11

71b7ff9

Figure 5: Convolutional Model Architecture

Input
Layer

Convolutional
 Layers

Fully Connected
 Layers

Convolutional
 Layers

Fully Connected
 Layers

Fully Connected
 Layers

Prediction

12

71b7ff9

2.1.3 Recurrant Network Architecture

The third architecture we present here is a recurrent neural network (RNN) archi-

tecture. RNN models developed along with research on the application of neural

networks to language parsing and translation. Similar to the convolutional architec-

ture, the RNN architecture draws information from the temporal structure of the

input data. Specifically, these types of networks draw upon the sequence in which the

input data is presented to the model. Recurrent neural networks do this by accepting

input not only from the current input in a sequence but from the state of the network

that arose when considering previous inputs in that sequence. To describe this more

simply, RNNs have memory.

There are many variants of RNN architectures. In this paper, we focus on a

particular type called a long short term memory (LSTM) networks. This type of RNN

architecture is notable because it has the capacity to store a long-running memory

about the sequence along with short-run memory of the most recent network outputs.

Consequently, this allows the network to draw upon broad contextual features in the

data (long-run memory) as well as information provided by only the most recent

elements in a sequence (short-run memory).

A verbose illustration of the LSTM architecture is provided in Figure 6. As illus-

trated, each input x is fed into a computational node (we might think of this as a

1-node layer), which also accepts inputs from the output of the preceding layer18 (de-

noted si, hi). The term si represents the state of the network at the ith member of the

sequence. The state is the long-running memory (or understanding) of the sequence,

as informed by the elements of the sequence to which the network has been exposed.

The term hi is the prediction (or output) of the layer that corresponds to a given

element (i) in the sequence. Notably then, we can understand this architecture as

consisting of many layers and having the following properties: each layer corresponds

to a particular element in the sequence; each layer receives the network’s long-run

understanding of the sequence so far ; and each layer receives the output generated

from the previous element in the sequence.

A more concise representation of the recurrent architecture is provided in Figure 7.

18The exception to this is the first layer, for which values s0 and h0 are initialized to random
values and zero, respectively.

13

71b7ff9

This “rolled” version of a recurrent (LSTM) architecture represents the recurrent

architecture as a “cell”. The arrow from the cell to itself indicates the feedback loop

created as the output from one element of the sequence is taken as input along with

the next element in the sequence.

Figure 6: Diagram of an unrolled recurrant network

x1

x2

x3 f(x3, h2, s2)

f(x2, h1, s1)

f(x1, h0, s0) s1

s2

s3

sk

hk

...

...

f(xk, hk�1, sk�1)xk

sk�1

h1

h2

h3

hk�1

Figure 7: Diagram of rolled recurrant network

xt�k, . . . xt�2, xt�1, xt LSTM Cell xt+n

We build a model around the LSTM architecture and test it in this paper. A

diagram of the model is presented in Figure 8. In addition to the LSTM cell, we add

several stacks of fully-connected layers (with residual connections). These stacks are

14

71b7ff9

Figure 8: Complete of LSTM model as tested

Input
Layer

LSTM Cell Fully Connected
 Layers

Fully Connected
 Layers

Fully Connected
 Layers

Prediction

identical in structure to the stacks that appear at the end of the convolutional model.

Their central purpose is to fine-tune the predictions from the LSTM cell and convert

the output into a shape that is appropriate for prediction.

2.1.4 Encoder-Decoder Network

The last type of architecture that we employ here is an extension of the LSTM

architecture discussed above. It is called an encoder-decoder architecture19. It is

a member of a broader class of networks called sequence to sequence models. The

encoder-decoder architecture was initially developed to facilitate language modeling.

Specifically, it was developed to allow a model to predict words in the output while

considering the context of individual words in the input along with the context of the

words that have already been predicted in the output.

The architecture is comprised of two components, aptly named the encoder and

the decoder. The encoder is a LSTM architecture (or similar RNN architecture). As

discussed in section 2.1.3 this portion of the model will consider each portion of a

sequence of data as well as the response of the encoder to the preceding portions

of the sequence. The decoder module is also an LSTM architecture (or similar). It

will consider each portion of the sequence output by the encoder. The decoder also

considers its own responses to earlier portions of the encoder-produced sequence. In

other words, the decoder allows for the model to make predictions that fit with the

19Cho et al., 2014; Sutskever, Vinyals, and Le, 2014.

15

71b7ff9

context established its earlier predictions. In its use in language models, this allows

for the model to, for example, ensure that the model’s response is grammatically

appropriate (e.g. that subjects and verbs agree).

When used in a forecasting model, the decoder module assists with predicting

long forecast horizons. The model discussed in the previous section forces an LSTM

module to produce predictions of a desired horizon in a single step. When the pre-

diction horizon is one, the LSTM module is tasked with predicting the next element

in the sequence. When it is two, the module skips any consideration of the next

element in the sequence and attempts to predict the second-to-next element in the

sequence, etc. We expect the LSTM module to be generally accurate at predicting

the next, or nearly next element in a sequence and less accurate when forced to skip

several elements in the sequence. By adding a decoder module, the encoder module

can, essentially, produce a one step ahead prediction, and the decoder module can

iteratively extrapolate that one step prediction out to the desired prediction horizon.

The encoder-decoder architecture that we use for testing is diagrammed in Fig-

ure 9. As discussed above, it is essentially two LSTM networks stacked on top of

one another. The first network takes a sequence of input data and produces a rep-

resentation of it. The output representation is fed into the second network, which is

initialized with the same state as the the final state from the encoder module (i.e. the

first LSTM cell)20. Note that, unlike the convolutional model and LSTM model pre-

sented above, this model does not contain a stack of fully connected layers at the end.

While we certainly could add the layers, we expect the decoder module (the second

LSTM layer) to actually perform the function of fine-tuning that the fully connected

layers would otherwise provide.

20Initializing the decoder with this state provides additional summary information about the
encoded representation to the decoder module and is consistent with extant literature on encoder-
decoder modules.

16

71b7ff9

Figure 9: Encoder-Decoder Diagram

Input
Layer LSTM Cell PredictionLSTM Cell

17

71b7ff9

2.2 Performance goals/constraints

In section 1.1, we refer to a number of limitations, or challenges to extant forecasting

models. These included constraints on functional form and sensitivity to proper

specification.

The neural network approach is, by construction, not subject to the limitations of

VAR models; we thereby establish the usefulness of this approach by demonstrating

the competitive performance of these models. Further, as noted above, the SPF

provides us with two benchmarks for model performance: mean absolute error across

individual forecasts, and the variance across individual forecasts.

We will test our model’s performance by forecasting unemployment. Our perfor-

mance goals are for the models to provide forecasts with lower mean absolute error

than the SPF forecasts and for models to exhibit lower variance in repeated runs than

the variance across individual forecasts in the SPF. Achieving these goals for each

of the models presented above suggests an additional benefit to the neural network

approach: robustness of the approach to model architecture.

3 Data

To test the performance of the neural network approach, we trained each of the

models presented above to predict the civilian unemployment rate (UNRATE).

This measure is collected monthly by the US Bureau of Labor and Statistics21. It

measures percentage of the labor force that is currently unemployed. The civilian

unemployment rate only measures unemployment in the US. At the time of this

writing, data for the UNRATE is available as far back as 1948, and as recently as

last month.

We chose to test our model on unemployment forecasting (as opposed to another

macroeconomic indicator) for a few reasons. First, unemployment is a substantively

meaningful indicator to forecast: the Federal Reserve promotes maximum sustainable

employment as part of its monetary policy mandate22, and it is closely monitored by

21Civilian Unemployment Rate [UNRATE].
22https://www.federalreserve.gov/aboutthefed/files/pf_3.pdf

18

71b7ff9

economic actors and scholars across a variety of sectors.

Second, unemployment usually undergoes limited revision after its initial release.

This is an important consideration since it allows us to generally sidestep the problems

of collecting and assembling appropriate ‘vintages’ of the data. We use the last release

of UNRATE for all training and testing. To be clear, the largest discrepancy between

the original vintage of the data and final release of the data is about 23 basis points

with the average discrepancy being 9 basis points. We assume the impact of these

discrepancies on the predictive accuracy of our forecasts to be negligible.

We target 0, 3, 6, 9 and 12 forecast horizons for UNRATE, consistent with the

forecast horizons for SPF. For each forecast horizon, we train each of the three models

presented above, yielding 20 total model variants for training.

The civilian unemployment rate is the sole series used as input for each of the

models. For each observation, the model inputs are the previous 36 monthly values of

UNRATE, along with first and second order differences in UNRATE. In theory,

the model could identify and extract the first and second order differences of the input

data, but we supply them directly because we are fairly certain that they will supply

the model with useful information and because it allows us to reduce the training

time and simplify the model structure.

It is possible and relatively easy to add additional series to these models and

we would expect performance gains from doing so. We refrain from adding addi-

tional series in this paper to allow us to simplify our discussion of the model and to

present models that are easily transferable to different contexts (e.g. regional/state

level prediction).

3.1 Model Training

We construct a training dataset from UNRATE data from 1963 to 1996. Every

tenth observation in this period is sequestered into a validation dataset. We use the

validation dataset to evaluate the performance and accuracy of the model over the

course of the training process. The remainder of the data, from 1997 to 2014 onwards,

is sequestered into a testing dataset. We use this dataset to evaluate the performance

of the trained model. We chose this time-period for the testing dataset because it is

19

71b7ff9

the time period that the SPF considers when reporting their error statistics.

The training process is subject to stochasticity. The initial weights for each model

network are randomly distributed. Additionally, we implement a regularization tech-

nique called ‘dropout’ in which, for each step in the training process, the output of

a randomly selected subset of nodes are ignored. This limits the over-dependence of

the model on any one node and thereby reduces the potential for overfitting. Beyond

this, there are a few other sources of stochasticity in the training process including

the optimization routine itself (a variant of mini-batch stochastic gradient descent).

As a consequence of the stochasticity inherent to the model training process,

repeated runs of the same model will yield trained networks that vary in their weights

and, consequently, in forecasts. To accommodate this variance, we train 30 instances

of each model. This allows us to assess expected model performance as well as assess

the variance in performance across repeated runs of the same model.

4 Results

Model performance is provided in Table 1. Each of the first three columns describe

the performance of a model in terms of mean absolute error (MAE), aggregated

across repeated iterations. The mean MAE indicates the average model performance.

The standard deviation of the MAE gives some sense of the distribution in model

performance across repeated trainings of a model. The final two columns provide

performance metrics on two benchmark models.

The first benchmark model is a directed23 autoregressive model (DARM) that uses

monthly data. The model is specified as follows:

̂UNRATEt+n =
k∑

i=1

βi UNRATEt−i (2)

Where t indexes the time of forecast, k is the number of lags, and n indicates the

forecast horizon. In this paper, we use the DARM model estimates published by the

23This is to be contrasted with an iterative model, in which the next-step-ahead is forecast and
then iterative extrapolation is used to generate a prediction for the desired forecast horizon.

20

71b7ff9

SPF24.

The DARM is the best-performing benchmark used by SPF in their model as-

sessments25. Generally speaking, each model performs favorably compared to the

DARM, with the exception of the Convolutional and LSTM models, which perform

worse than the DARM model at the third and fourth quarter prediction horizons.

The last column characterizes the performance of SPF participants. For each par-

ticipant (i.e. each company/agency/forecaster that submits forecasts to the SPF), we

calculated the MAE of their forecasts on the years 1997-2015 for 0-4 quarter predic-

tion horizons. Accordingly, the minimum and maximum MAE reported in the fourth

column of Table 1 indicates the MAE of the best and worst individual respondent at

a given time horizon. The mean indicates the average individual performance, and

the standard deviation indicates the variation across individual respondents to the

SPF. A visualization of these results is provided in Figure 1026.

Table 1: Performance metrics for SPF, DARM and neural network models at 0-4
quarter prediction horizons

Fully CONV LSTM Encoder DARM SPF
Connected Decoder

Horizon

0 Months Mean MAE 7.6 13.4 10.4 4.4 11.7 13.5
St. Dev. 2.7 5.4 05.8 0.2 6.3

3 Months Mean MAE 25.3 25.7 27.3 018.4 32.8 27.1
St. Dev. 2.9 3.5 2.8 0.1 9.3

6 Months Mean MAE 44.1 48.3 47.3 30.5 49.3 41.2
St. Dev. 4.1 3.1 6.6 0.5 15.7

9 Months Mean MAE 63.8 80.4 74.8 46.1 65.8 56.8
St. Dev. 4.8 4.7 11.0 0.7 22.8

12 Months Mean MAE 87.0 111.6 101.7 62.0 90.7 72.0
St. Dev. 4.9 5.7 20.7 0.6 29.1

All metrics presented in basis points.

24Stark, 2017.
25Ibid.
26Additional visualizations of the distribution of errors for both SPF participant responses and

the neural network models tested are provided in the Appendix, in Figure 13 and Figure 14.

21

71b7ff9

F
ig
u
re

1
0
:

D
is

tr
ib

u
ti

on
of

m
ea

n
ab

so
lu

te
er

ro
r

ac
ro

ss
n
et

w
or

k
ar

ch
it

ec
tu

re
s

at
va

ri
ou

s
h
or

iz
on

s.

0510

ho
riz

 =
 0

| m
od

el
=

LS
TM

05

ho
riz

 =
 0

| m
od

el
=

Co
nv

olu
tio

na
l

051015

ho
riz

 =
 0

| m
od

el
=

FC

0204060

ho
riz

 =
 0

| m
od

el
=

En
co

de
r_

De
co

de
r

0510

ho
riz

 =
 3

| m
od

el
=

LS
TM

0510

ho
riz

 =
 3

| m
od

el
=

Co
nv

olu
tio

na
l

051015
ho

riz
 =

 3
| m

od
el

=
FC

0

10
0

20
0

ho
riz

 =
 3

| m
od

el
=

En
co

de
r_

De
co

de
r

0246

ho
riz

 =
 6

| m
od

el
=

LS
TM

051015

ho
riz

 =
 6

| m
od

el
=

Co
nv

olu
tio

na
l

05

ho
riz

 =
 6

| m
od

el
=

FC

05010
0

ho
riz

 =
 6

| m
od

el
=

En
co

de
r_

De
co

de
r

0123

ho
riz

 =
 9

| m
od

el
=

LS
TM

05

ho
riz

 =
 9

| m
od

el
=

Co
nv

olu
tio

na
l

0510

ho
riz

 =
 9

| m
od

el
=

FC

0204060

ho
riz

 =
 9

| m
od

el
=

En
co

de
r_

De
co

de
r

0.0
0.5

1.0
1.5

2.0
2.5

me
an

_e
rro

r

012

ho
riz

 =
 12

 | m
od

el
=

LS
TM

0.0
0.5

1.0
1.5

2.0
2.5

me
an

_e
rro

r

0246
ho

riz
 =

 12
 | m

od
el

=
Co

nv
olu

tio
na

l

0.0
0.5

1.0
1.5

2.0
2.5

me
an

_e
rro

r

0246

ho
riz

 =
 12

 | m
od

el
=

FC

0.0
0.5

1.0
1.5

2.0
2.5

me
an

_e
rro

r

02040

ho
riz

 =
 12

 | m
od

el
=

En
co

de
r_

De
co

de
r

E
ac

h
fa

ce
t

in
th

is
fi

gu
re

co
m

p
ar

es
th

e
d

is
tr

ib
u

ti
o
n

o
f

m
ea

n
a
b

so
lu

te
er

ro
r

a
cr

o
ss

S
P

F
p

a
rt

ic
ip

a
n
ts

(g
re

en
)

w
it

h
th

e
d

is
tr

ib
u

ti
o
n

o
f

m
ea

n
ab

so
lu

te
er

ro
r

ac
ro

ss
re

p
ea

te
d

ru
n

s
of

a
n

et
w

o
rk

a
rc

h
it

ec
tu

re
(b

lu
e)

,
a
t

a
g
iv

en
fo

re
ca

st
h

o
ri

zo
n

.
E

a
ch

co
lu

m
n

o
f

fa
ce

ts
co

rr
es

p
o
n

d
s

to
a

d
iff

er
en

t
n

et
w

or
k

ar
ch

it
ec

tu
re

,
ea

ch
ro

w
of

fa
ce

ts
co

rr
es

p
o
n

d
s

to
a

sp
ec

ifi
c

fo
re

ca
st

h
o
ri

zo
n

.
A

cr
o
ss

a
ll

co
lu

m
n

s,
th

er
e

is
a

te
n

d
en

cy
fo

r
th

e
M

A
E

of
n

et
w

or
k

m
o
d

el
s

to
cl

u
st

er
at

or
b

el
ow

th
e

av
er

a
g
e

M
A

E
fo

r
th

e
S

P
F

p
a
rt

ic
ip

a
n
ts

fo
r

th
e

fi
rs

t
th

re
e

fo
re

ca
st

h
o
ri

zo
n

s
(fi

rs
t

th
re

e
ro

w
s)

.
B

ey
on

d
th

is
,

th
e

M
A

E
of

n
et

w
or

k
m

o
d

el
s

cl
ea

rl
y

st
a
rt

s
to

cl
u

st
er

a
b

ov
e

th
e

av
er

a
g
e

S
P

F
p

a
rt

ic
ip

a
n
t

M
A

E
,

in
d

ic
a
ti

n
g

p
er

fo
rm

a
n

ce
in

fe
ri

or
to

th
e

S
P

F
at

lo
n

ge
r

fo
re

ca
st

h
or

iz
o
n

s.

71b7ff9

Broadly speaking, the encoder-decoder model outperforms the SPF and all other

models tested. At every time horizon, the encoder-decoder model produces pre-

dictions that improve on the predictions of any of the other three models. The

encoder-decoder model predictions exhibit as much as an 89% reduction in error

when compared to the SPF participant’s mean absolute error.

All four models yield predictions that exceed SPF participant MAE at least one

prediction horizon and bear further discussion.

At the current-quarter horizon, all four neural network models exceed the SPF

participants in terms of average performance. As mentioned above, this is a mean-

ingful benchmark for models since it establishes a threshold whereby the inclusion of

the model into SPF forecasts would yield an improvement in the accuracy of the SPF

forecast. The fully connected (FC) and LSTM models perform similarly, while the

convolutional (CONV) model lags slightly behind (but still remains competitive with

the mean SPF participant performance). The encoder-decoder is the best performing

model.

At a one-quarter prediction horizon, fully connected and convolutional model

averages continue to outperform SPF respondent averages. The LSTM model average

falls very slightly behind the average SPF respondent performance. Convolutional,

fully connected, and LSTM models perform similarly. The encoder-decoder model

continues to demonstrate a substantial reduction in mean absolute error, compared

to SPF participant MAE.

All three neural network models remain competitive with the SPF respondents

at the two-quarter prediction horizon. It is at this point, however, that the average

SPF respondent models outperform the fully connected, convolutional and LSTM

neural-network models (albeit by only a small margin). The encoder-decoder network

continues to outperform the mean SPF participant predictions. Beyond the two

quarter prediction horizon, only the encoder-decoder model continues to outperform

the mean SPF participant predictions.

Generally, the variation across repeated trainings of a model is smaller than the

overall variation across individual responses in the SPF. Intuitively, this should be

expected – the participants in the SPF are expected to use state of the art forecasting

methods, but no participant is constrained to use a particular method. It follows

23

71b7ff9

that the individual responses to the SPF reflect the variation in outcomes from a

set of similar but likely heterogeneous models. The repeated trainings of neural

network models reflect the outcomes of a comparatively less heterogeneous set of

models (varying only with respect to the sources of stochasticity as described above).

It is therefore not very surprising that the variance across repeated trainings of the

neural network models is smaller than across SPF responses but the comparison is

nevertheless useful, if only to provide a sense of scale for the precision of model

estimates.

24

71b7ff9

4.1 Ensemble Models

The reported SPF forecast for unemployment is a singular, point-estimate of unem-

ployment at zero to four quarter forecast horizons. Technically, this forecast is an

ensemble forecast; it is it is the median forecast across all survey participants.

Since we have repeatedly trained the neural network models discussed above, we

can similarly produce ensemble estimates of unemployment. Unlike SPF, however,

we will produce ensemble estimates by employing a neural network. The design of

the network is deliberately simple, perceptron model (functionally, a linear model).

We create several ensemble predictions of each architecture individually as well

as an ensemble of all the combined predictions of all four architectures. Performance

metrics for these models are provided in Table 2. The first five columns present per-

formance for our various model ensembles, across each forecast horizon. In addition

to the ensemble MAE, we also report the ratio of the ensemble MAE to benchmark

model MAE, which indicates the extent of the performance improvement compared

to each benchmark model.

Table 2: Mean Absolute Error for Ensembled models and aggregate SPF forecast
Fully Convolutional LSTM Encoder Combined DARM SPF

Horizon Metric Connected Decoder

0 month MAE 4.3 7.2 4.8 4.1 9.4 11.7 10.1
MAE/DARM 36.3 61.3 41.1 35.2 80.1
MAE/SPF 42.3 71.6 48.0 41.1 93.6

3 month MAE 21.5 22.4 24.2 18.4 21.5 32.8 23.1
MAE/DARM 65.6 68.4 73.6 56.0 65.6
MAE/SPF 93.4 97.3 104.8 079.8 093.3

6 month MAE 41.4 43.8 40.1 30.1 41.6 49.3 35.7
MAE/DARM 83.9 88.9 81.3 61.1 84.3
MAE/SPF 116.1 123.0 112.4 84.5 116.6

9 month MAE 54.8 73.1 66.4 45.9 65.0 65.8 50.3
MAE/DARM 83.3 111.1 101.0 69.8 98.8
MAE/SPF 108.9 145.2 132.0 91.2 129.1

12 month MAE 77.9 108.3 90.0 61.8 82.5 90.7 63.0
MAE/DARM 85.8 119.3 99.1 68.1 91.0
MAE/SPF 123.6 171.8 142.7 098.0 131.0

All metrics presented in basis points.

The results presented in Table 2 are similar to the the comparison of individ-

ual model estimates and SPF participant estimates, presented above. The encoder-

decoder ensemble out performs the SPF model at every horizon. At the current-

quarter horizon, each of the individual ensembles out-performs the SPF model (in-

25

71b7ff9

dicated in Table 2 by an MAE/SPF less than one). The ensembles outperform or

remain competitive with the SPF at the first-quarter horizon. Neural network en-

sembles remain competitive at the two quarter horizon. With the exception of the

encoder-decoder ensemble, the ensembles fall behind the SPF at the third and fourth

quarter horizons. The models perform slightly better compared to the DARM bench-

mark, but the convolutional and LSTM ensembles still perform worse than the DARM

at some forecast horizons.

4.2 Encoder-Decoder Performance

The encoder-decoder model is, in every regard, the best model tested in this analysis.

The best performing iteration of the encoder-decoder model outperforms not only the

mean SPF participant, but it also outperforms the overall SPF forecasts.

Figure 11 provides us with a different perspective of model performance27. It

shows the encoder-decoder model forecasts for every quarter from Q1 1997 through

Q4 2015. The actual observed values of UNRATE are also provided, as are the SPF

forecasts. As expected, the line representing the encoder-decoder forecast is typically

closer to the line representing the observed value than the line representing the SPF

forecast.

More revealing, however, is the location of inflection points in the encoder- decoder

forecast and SPF forecast around the time of the 2007-2008 financial crisis. These

are more narrowly illustrated in Figure 12. Note that the encoder-decoder forecast

reverses course more quickly than the SPF forecast as the recession begins. We

might speculate that this means that the encoder-decoder model is more responsive,

or adapts more quickly to major shifts in the data. This is also suggested by the

quickness with which the encoder-decoder responds to the subsequent recovery in

2010.

Table 3 provides more precise information about the responsiveness of the encoder-

decoder model. This table shows the location of the inflection points corresponding

to the observed unemployment minimum and unemployment maximum for the 2007

27Similar figures for the other model architectures are provided in the appendix.

26

71b7ff9

recession and recovery. Locations shown correspond to smoothed28 SPF and encoder-

decoder forecasts for one to four quarter horizons. Broadly, Table 3 suggests that

the encoder-decoder responded to the 2007 recession between one and three quarters

sooner than the SPF forecasts. The table also indicates that the encoder-decoder

model responded to the onset of recovery between one and two quarters sooner than

the SPF forecasts.

Table 3: Inflection points for SPF and
encoder-decoder forecasts near the 2007 recession

SPF
Encoder
Decoder

Unemployment Nadir (Q1 2007)
3 Month Horizon Model Q3 2007 Q1 2007
6 Month Horizon Model Q3 2007 Q2 2007
9 Month Horizon Model Q2 2008 Q3 2007
12 Month Horizon Model Q3 2008 Q1 2008

Unemployment Apex: Q1 2010
3 Month Horizon Model Q1 2010 Q4 2009
6 Month Horizon Model Q2 2010 Q4 2009
9 Month Horizon Model Q3 2010 Q1 2010
12 Month Horizon Model Q4 2010 Q2 2010

28Using a 2-period Gaussian window smoother. Generally, other window sizes/smoothers alter
the location of the inflection point slightly, but do not substantially alter the difference in location
between SPF and encoder-decoder forecasts.

27

71b7ff9

Figure 11: Encoder-Decoder model forecasts of UNRATE at varying horizons

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

0 Month Horizon

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

3 Month Horizon

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

4

5

6

7

8

9

10

6 Month Horizon

1999 2001 2003 2005 2007 2009 2011 2013 2015

4

5

6

7

8

9

10

9 Month Horizon

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

12 Month Horizon

ENCODERDECODER
ACTUAL

SPF

Each facet represented here shows the predictions of the SPF (red line) and best-performing encoder-
decoder model (blue line). The black line indicates the actual, observed level of unemployment.

28

71b7ff9

Figure 12: Smoothed forecasts of SPF and encoder-decoder model at three, six
and twelve month horizons

2007
2008

2009
2010

2011

5

6

7

8

9

10

3 months

2007
2008

2009
2010

2011

5

6

7

8

9

10

6 months

2007
2008

2009
2010

2011

5

6

7

8

9

10

12 months

Actual SPF Encoder-Decoder

This is a representation of forecasts of unemployment over 2007-2008 recession/recovery. The vertical
axis represents the level of unemployment. The horizontal axis represents time (in quarters). The
lines in the figure portray (smoothed) unemployment forecasts of the encoder-decoder model (green)
along with the SPF model predictions (red). The remaining line (black) indicates the observed level
of unemployment.

29

71b7ff9

5 Discussion

The models presented here use a novel technique for forecasting unemployment. Each

model architecture provided competitive near-term forecasting performance. This

suggests a general robustness to model architecture – at least with respect to near-

term forecasting. The encoder-decoder model provides an overall improvement in

performance over the SPF.

The implementation of neural network models, however, are not without practical

challenges. We have encountered several of these when developing the models for

this paper. First, networks can require a lot of computational power and take a long

time to converge if they are very complicated. Second, network performance will

be far more sensitive to architecture/design (depth, types of layers, regularization

parameters, etc.) when training data is in short supply. Third, and relatedly, it is

easier to train networks on data that is scaled to (-1,1) or (0,1). This is easy to

accomplish with metrics that are taken as a rate (such as the unemployment rate),

but it is more difficult with non-stationary metrics such as nominal gross domestic

product.

5.1 Avenues for further development

There are a few ways that we expect to improve model performance as we continue to

develop this project. First, we anticipate that the inclusion of additional information

as model inputs will improve model considerably. In this paper we have deliberately

restricted ourselves to the use of a single series as the basis for model inputs. The

addition of labor flows, temporal markers (e.g. month and season information), and

other macro-indicators as model inputs should provide more information for model

forecasts.

Second, we expect that employing more advanced architectures will provide in-

creased performance. The architectures that we explore in this paper are deliberately

simple and intended to apply across a variety of forecasting problems. We expect the

use of more advanced architectures to produce better performance. Specifically, we

may be able to improve performance over the encoder decoder model by augmenting

the model with an attention module, which has become a common component of

30

71b7ff9

sequence to sequence models. Moreover, deep learning models are undergoing rapid

development, with new techniques published every week. As new techniques emerge,

we expect that we will be able to integrate them into the networks presented above

to further improve performance.

31

71b7ff9

References

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation”. eprint: 1406.1078. url: https:

//arxiv.org/abs/1406.1078.

Creel, Michael (2016). “Neural Nets for Indirect Inference”. Econometrics and Statis-

tics.

Cui, Zhicheng, Wenlin Chen, and Yixin Chen (2016). “Multi-Scale Convolutional Neu-

ral Networks for Time Series Classification”. CoRR abs/1603.06995. url: http:

//arxiv.org/abs/1603.06995.

Diebold, Francis X (1997). The past, present, and future of macroeconomic forecasting.

Tech. rep. National Bureau of Economic Research. url: http://www.nber.org/

papers/w6290.pdf.

Gao, Tianxiang and Vladimir Jojic (2016). “Degrees of Freedom in Deep Neural

Networks”. eprint: 1603.09260. url: https://arxiv.org/abs/1603.09260.

Gurney, Kevin (1997). An introduction to neural networks. CRC press. url: http:

//www.inf.ed.ac.uk/teaching/courses/nlu/reading/Gurney_et_al.pdf.

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. eprint:

1512.03385. url: https://arxiv.org/abs/1512.03385.

Kriesel, David (2007). A brief Introduction on Neural Networks. Zeta2. url: http:

//www.dkriesel.com.

Lucas, Robert E (1976). “Econometric policy evaluation: A critique”. In: Carnegie-

Rochester conference series on public policy. Vol. 1. Elsevier, pp. 19–46.

Minsky, Marvin and Seymour Papert (1988). Perceptrons: an introduction to compu-

tational geometry (expanded edition). MIT Press, Cambridge, Ma.

Nouri, Daniel (2014). Using deep learning to listen for whales. url: http://danielnouri.

org/notes/2014/01/10/using-deep-learning-to-listen-for-whales/.

Pescatori, Andrea, Saeed Zaman, et al. (2011). “Macroeconomic models, forecasting,

and policymaking”. Economic Commentary 19.20, p. 1.

Rojas, Raúl (2013). Neural networks: a systematic introduction. Springer Science &

Business Media.

Rosenblatt, Frank (1958). “The perceptron: A probabilistic model for information

storage and organization in the brain.” Psychological review 65.6, p. 386.

32

71b7ff9

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning

representations by back-propagating errors”. Nature 323.6088, pp. 533–536. url:

http://dx.doi.org/10.1038/323533a0.

Sims, Christopher A (1980). “Macroeconomics and reality”. Econometrica: Journal

of the Econometric Society, pp. 1–48.

Stark, Tom (2017). Error Statistics for the Survey of Professional Forecasters for Un-

employment Rate. Tech. rep. Federal Reserve Bank of Philadelphia. url: https:

//www.philadelphiafed.org/- /media/research- and- data/real- time-

center/survey- of- professional- forecasters/data- files/unemp/spf_

error_statistics_unemp_1_aic.pdf?la=en.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to Sequence Learn-

ing with Neural Networks”. eprint: 1409.3215. url: https://arxiv.org/abs/

1409.3215.

U.S. Bureau of Labor Statistics. Civilian Unemployment Rate [UNRATE]. Retrieved

from FRED, Federal Reserve Bank of St. Louis. url: https://fred.stlouisfed.

org/series/UNRATE.

Ye, Jianming (1998). “On measuring and correcting the effects of data mining and

model selection”. Journal of the American Statistical Association 93.441, pp. 120–

131.

A Additional Figures

33

71b7ff9

Figure 13: Distribution of mean absolute error across SPF participants at various
forecast horizons

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5 SPF predictions at 3 month horizon
SPF predictions at 6 month horizon
SPF predictions at 9 month horizon
SPF predictions at 12 month horizon

This figure illustrates the distribution in performance in SPF participants at each forecast horizon. Errors
cluster at progressively higher levels of MAE as the forecast horizon lengthens, indicating poorer perfor-
mance at longer horizons. Additionally, participant MAE grows more diffuse as forecast horizons lengthen,
indicating less consensus in predictions at longer forecast horizons.

34

71b7ff9

Figure 14: Distribution of mean absolute error at various forecast horizons across all
architectures tested

0

5

10

15
model = Fully Connected

0

5

10

model = LSTM

0

5

10

15

model = Convolutional

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Mean Absolute Error

0

100

200

model = Encoder Decoder

0 3 6 9 12

This figure illustrates the distribution in performance across repeated trainings of each of the architectures
tested. Each facet displays the distribution of mean absolute error over repeated trainings of a specific
architecture, for each of the 0-4 quarter forecast horizons targeted in this analysis. While the fully connected,
LSTM, and convolutional models all exhibit roughly comparable error distributions, the error distribution
of the encoder decoder model exhibits far less variance in performance.

35

71b7ff9

Figure 15: Convolutional model forecasts of UNRATE at varying horizons

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

0 Month Horizon

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

3 Month Horizon

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

4

5

6

7

8

9

10

6 Month Horizon

1999 2001 2003 2005 2007 2009 2011 2013 2015

4

5

6

7

8

9

10

9 Month Horizon

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

3

4

5

6

7

8

9

10

12 Month Horizon

CONV
ACTUAL

SPF

Each facet represented here shows the predictions of the SPF (red line) and best-performing convolu-
tional decoder model (blue line). The black line indicates the actual, observed level of unemployment.

36

71b7ff9

Figure 16: Fully Connected model forecasts of UNRATE at varying horizons

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

0 Month Horizon

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

3 Month Horizon

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

4

5

6

7

8

9

10

6 Month Horizon

1999 2001 2003 2005 2007 2009 2011 2013 2015

4

5

6

7

8

9

10

9 Month Horizon

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

12 Month Horizon

FC
ACTUAL

SPF

Each facet represented here shows the predictions of the SPF (red line) and best-performing Fully
Connected model (blue line). The black line indicates the actual, observed level of unemployment.

37

71b7ff9

Figure 17: LSTM model forecasts of UNRATE at varying horizons

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

0 Month Horizon

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

3 Month Horizon

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

4

5

6

7

8

9

10

6 Month Horizon

1999 2001 2003 2005 2007 2009 2011 2013 2015

4

5

6

7

8

9

10

9 Month Horizon

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

4

5

6

7

8

9

10

12 Month Horizon

LSTM
ACTUAL

SPF

Each facet represented here shows the predictions of the SPF (red line) and best-performing LSTM
model (blue line). The black line indicates the actual, observed level of unemployment.

38

