kcfed Research Working Papers

Uncertainty Shocks in a Model of Effective Demand: Reply

Susanto Basu and Brent Bundick July 2018 RWP 18-05 https://dx.doi.org/10.18651/RWP2018-05

FEDERAL RESERVE BANK of KANSAS CITY

Uncertainty Shocks in a Model of Effective Demand: Reply^{*}

Susanto Basu[†] Brent Bundick[‡]

July 2018

Abstract

de Groot, Richter, and Throckmorton (2018) argue that the model in Basu and Bundick (2017) can match the empirical evidence only because the model assumes an asymptote in the economy's response to an uncertainty shock. In this Reply, we provide new results showing that our model's ability to match the data does not rely either on assuming preferences that imply an asymptote nor on a particular value of the intertemporal elasticity of substitution. We demonstrate that shifting to preferences that are not vulnerable to the Comment's critique does not change our previous conclusions about the propagation of uncertainty shocks to macroeconomic outcomes.

JEL Classification: E32, E52

Keywords: Uncertainty Shocks, Monetary Policy, Sticky-Price Models

In Uncertainty Shocks in a Model of Effective Demand, we examine the macroeconomic effects of changes in uncertainty about the future. Figure 1 of this Reply summarizes some of the key findings of our work. In the data, an identified uncertainty shock causes statistically significant declines in output, consumption, investment, and hours worked. We argue that this comovement between output and its components is a key empirical feature of the economy's response to an uncertainty shock. Then, we examine whether a generalequilibrium model can reproduce this empirical evidence. If prices adjust slowly to changing economic conditions, we show that a relatively simple theoretical model can match the actual economy's response to an increase in uncertainty. Moreover, Table 1 illustrates that the model can match this empirical evidence while remaining consistent with the observed unconditional and stochastic volatility in key macroeconomic aggregates.

In our paper, we model uncertainty shocks as changes in the second moment of household discount rate shocks, which we interpret as changes in the *ex ante* uncertainty about future demand. To help the model match both macroeconomic and financial market data, we incorporate these discount factor shocks into a

^{*}We thank Efrem Castelnuovo, Anthony Diercks, A. Lee Smith, and Stephen Terry for helpful comments and discussions. We also thank Trenton Herriford for excellent research assistance. The views expressed herein are solely those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Kansas City or the Federal Reserve System.

[†]Boston College and National Bureau of Economic Research. Email: susanto.basu@bc.edu

[‡]Federal Reserve Bank of Kansas City. Email: brent.bundick@kc.frb.org

setting in which the representative household has Epstein–Zin preferences over consumption C_t and leisure $1 - N_t$. Specifically, we assume that household's value function V_t^{BB} takes the following form:

$$V_t^{BB} = \max\left[a_t \left(1-\beta\right) \left(C_t^{\eta} (1-N_t)^{1-\eta}\right)^{\frac{1-\sigma}{\theta_V}} + \beta \left(\mathbb{E}_t \left(V_{t+1}^{BB}\right)^{1-\sigma}\right)^{\frac{1}{\theta_V}}\right]^{\frac{\sigma_V}{1-\sigma}},\tag{1}$$

where σ controls risk aversion over the consumption-leisure basket, ψ denotes the intertemporal elasticity of substitution (IES), η affects the elasticity of labor supply, and the parameter $\theta_V \triangleq (1 - \sigma) (1 - 1/\psi)^{-1}$ controls the household's preference for the resolution of uncertainty. a_t is the exogenous demand shock process, which has a steady state value of one and features time-varying first and second moments.

de Groot, Richter and Throckmorton (2018) challenge the robustness of the claim that our model can reproduce the actual economy's response to an uncertainty shock. Specifically, they argue that the ability of our model to match the data rests on an asymptote in the economy's response to an uncertainty shock with respect to the IES. Since a_t fluctuates over time, the distributional weights in our utility function specification do not always sum to one. When the IES is less than one, they show that, all else equal, increasing the IES produces larger declines in output and its components. As the IES approaches one from below, they point out that the economy's response to an uncertainty shock becomes significantly larger and features an asymptote when the IES equals one. When, instead, the IES approaches one from above, the effect of an uncertainty shock on economic activity is reversed. As the published version of our model set to IES = 0.95, they argue that this asymptote at the unitary IES is necessary for our model to reproduce our key findings. The Comment then proposes an alternative set of preferences which removes this asymptote with respect to the unitary IES:

$$V_t^{ALT} = \max\left[(1 - a_t \beta) \left(C_t^{\eta} (1 - N_t)^{1 - \eta} \right)^{\frac{1 - \sigma}{\theta_V}} + a_t \beta \left(\mathbb{E}_t \left(V_{t+1}^{ALT} \right)^{1 - \sigma} \right)^{\frac{1}{\theta_V}} \right]^{\frac{\sigma_V}{1 - \sigma}}$$
(2)

Under these alternative preferences, they show that our theoretical model generates much smaller responses to an uncertainty shock and fails to generate macroeconomic comovement between output, consumption, and investment.

Alternative Estimation Using Gourio (2012) Preferences & an IES = 0.5

We believe the Comment contributes to a better understanding of the properties of Epstein-Zin utility functions with preference shocks, and we have learned from it. However, the ability of our model to match the empirical evidence does *not* rely on assuming preferences that imply an asymptote nor on a particular value of the IES. In Section 5.2 of the Comment, the authors suggest another set of preferences, based on the analysis in Gourio (2012), which also removes the asymptote with respect to the IES:

$$V_t^G = \max\left[(1-\beta) \left(a_t C_t^{\eta} (1-N_t)^{1-\eta} \right)^{\frac{1-\sigma}{\theta_V}} + \beta \left(\mathbb{E}_t \left(V_{t+1}^G \right)^{1-\sigma} \right)^{\frac{1}{\theta_V}} \right]^{\frac{\theta_V}{1-\sigma}}$$
(3)

Figure 1 of this Reply illustrates the model-implied impulse responses if we re-estimate our baseline model using these alternative preferences and set the IES equal to the commonly-cited value of 0.5. In terms of the visual fit, especially of the impulse response of output, this alternative specification produces impulse responses that are nearly as good as our published results. Moreover, Table 1 shows that this ability to fit the empirical impulse responses with the Gourio preferences and an IES of 0.5 does not lead the model to over-predict either the unconditional or stochastic volatility in output and its components. Our estimates for these moments are quite close to those in our original paper, and remain consistent with their empirical counterparts. The overall distance criterion J, which measures the distance between the model-implied impulse responses and unconditional moments from their empirical counterparts, is also significantly lower under this alternative estimation, suggesting that the data actually prefer these alternative preferences and a lower value of the IES.

Table 2 shows the calibrated and estimated model parameters for both the published version of our model and this re-estimation exercise. To reproduce our previously published results under these preferences, we slightly increased risk aversion from $\sigma = 80$ to $\sigma = 100$ and increased the degree of nominal price rigidity from $\Phi_P = 100$ to $\Phi_P = 240$. However, both of these alternative parameterizations are well within the range of estimates from the literature.¹

This exercise shows that alternative preferences and calibrations may affect the exact degree of nominal rigidities and risk aversion needed to reproduce the VAR evidence while remaining consistent with the observed volatility in macro aggregates. Importantly, these results show that our model need not rely on the presence of an asymptote nor a particular value of the IES to reproduce the actual economy's response to an uncertainty shock.²

We have shown that we can reproduce our key findings using the Gourio (2012) preferences, which do not have an asymptote at the unitary IES. The presence of this asymptote in our published paper is the Comment's objection to our previous work. The new results we present in this Reply show that shifting to preferences that are not vulnerable to this critique does not change our core qualitative or quantitative conclusions. While the Comment makes a useful contribution to the literature, it does not change the basic message of our paper regarding the propagation of uncertainty shocks to macroeconomic outcomes.

¹For example, Ireland (2003) estimates a point estimate of $\Phi_P = 162$ with a standard error of 79. Our alternative calibration for the degree of nominal price rigidity implies a Phillips curve slope with respect to marginal costs of 0.02, which is within the range of empirical estimates surveyed in Schorfheide (2008). van Binsbergen et al. (2012) and Rudebusch and Swanson (2012) find that high risk aversion parameters, ranging from 40 to 110 across different specifications, help their models match macro and bond market data.

 $^{^{2}}$ Using an IES very close to zero, de Groot, Richter and Throckmorton (2018) also show that the model can also match the data using higher risk aversion and larger nominal rigidities.

References

- Basu, Susanto, and Brent Bundick. 2017. "Uncertainty Shocks in a Model of Effective Demand." *Econometrica*, 85(3): 937–958.
- de Groot, Oliver, Alexander W. Richter, and Nathanial A. Throckmorton. 2018. "Uncertainty Shocks in a Model of Effective Demand: Comment." *Econometrica*. Forthcoming.
- Gourio, Francois. 2012. "Disaster Risk and Business Cycles." American Economic Review, 102: 2734–2766.
- Ireland, Peter N. 2003. "Endogenous Money or Sticky Prices." Journal of Monetary Economics, 50: 1623– 1648.
- Rudebusch, Glenn D., and Eric T. Swanson. 2012. "The Bond Premium in a DSGE Model with Long-Run Real and Nominal Risks." *American Economic Journal: Macroeconomics*, 4(1): 1–5.
- Schorfheide, Frank. 2008. "DSGE Model-Based Estimation of the New Keynesian Phillips Curve." Federal Reserve Bank of Richmond Economic Quarterly, 94(4): 397–433.
- van Binsbergen, Jules H., Jesùs Fernàndez-Villaverde, Ralph S.J. Koijen, and Juan Rubio-Ramìrez. 2012. "The Term Structure of Interest Rates in a DSGE Model with Recursive Preferences." *Journal of Monetary Economics*, 59: 624–64.

		Model	Model
		BB Preferences	Gourio Preferences
Moment	Data	Published Calibration	Alternative Calibration
Unconditional Volatility			
Output	1.1	1.0	0.9
Consumption	0.7	0.8	0.7
Investment	3.8	4.7	4.7
Hours Worked	1.4	0.8	1.4
Stochastic Volatility			
Output	0.4	0.2	0.2
Consumption	0.2	0.2	0.1
Investment	1.6	1.2	1.0
Hours Worked	0.5	0.2	0.2
Distance Criterion J		227.8	177.0

Note: Unconditional volatility is measured with the sample standard deviation. We measure stochastic volatility using the standard deviation of the time-series estimate for the 5-year rolling standard deviation. The empirical sample period is 1986 - 2014. The published version of the Basu-Bundick (BB) model uses the preference specification in Equation (1), while the model with Gourio preferences uses the preference specification in Equation (3). The distance criterion J measures the distance between the model-implied impulse responses and unconditional moments from their empirical counterparts. See Equation (11) of Basu and Bundick (2017) for a formal definition of the distance criterion.

Table 2: Model Parameters

	BB Preferences	Gourio Preferences
Parameter	Published Calibration	Alternative Calibration
IES ψ	0.95	0.50
Risk Aversion σ	80	100
Nominal Price Rigidity ϕ_P	100	240
Capital Adjustment Costs ϕ_K	2.09	3.92
Unconditional Shock Volatility σ^a	0.003	0.005
1st-Moment Shock Persistence ρ_a	0.94	0.98
Uncertainty Shock Size σ^{σ^a}	0.003	0.004
Uncertainty Shock Persistence ρ_{σ^a}	0.74	0.77

Note: Parameters listed in bold are estimated via impulse response and moment matching. See Section 4 of Basu and Bundick (2017) for additional information about the model and its parameters.

Figure 1: Empirical & Model-Implied Responses to an Uncertainty Shock