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1 Introduction

There are noticeable low-frequency movements in the U.S inflation data. For in-

stance, the inflation rate as measured by the GDP deflator in Figure 1 shows an

upward trend during the 1960s and 1970s. This upward trend is reversed after the

Volcker disinflation period of the early 1980s. To fit this persistent inflation process,

estimated dynamic stochastic general equilibrium (DSGE) models often model the

central bank’s inflation target as a nonstationary process (e.g., Smets and Wouters

(2005), Ireland (2007).1 The permanent shifts in the inflation target induce a com-

mon trend for nominal interest rates. Unit root tests of inflation and interest rates

in Table 1 provide evidence for such a specification. Under this specification, the

entire yield curve, not just the short rate, reflects the movement of inflation target,

because long-horizon inflation expectations affect long-term rates. Accordingly, us-

ing the entire term structure of interest rates can provide additional information in

estimating inflation target, which is not directly observed but is a key determinant

of long-horizon inflation expectations.

In this paper, I estimate a small-scale New Keynesian DSGE model using yield

curve data on top of macro data. In the model, monetary policy follows a nominal

interest rate rule with a drifting inflation target. The main focus of this paper is to

use the estimated DSGE model to find out the information content of the yield curve

about the time-varying inflation target of the central bank. The model features i)

imperfect information of private agents about inflation target and ii) time-varying

volatility in the macro shocks.2

There are two main findings from this study. First, the estimated target from

the DSGE model indeed captures the common trend for nominal interest rates and
1Of course, the Federal Reserve’s inflation target is only implicitly defined because the Federal

Reserve has not adopted explicit inflation targeting.
2See Beechey (2004), Dewachter and Lyrio (2008), and Dewachter (2008), Erceg and Levin

(2003), and Schorfheide (2005) on the implications of imperfect information for expected inflation.

On the other hand, Justiniano and Primiceri (2008) and Liu, Waggoner, and Zha (2007) emphasize

the role of the time-varying shock volatility as opposed to changes in monetary policy in explaining

macroeconomic fluctuations in the U.S.
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inflation. There are two pieces of evidence for this finding. First of all, unit root tests

for in-sample nominal interest rates and inflation data detrended by the estimated

target reject the existence of unit roots at 5% level. In addition, the estimated target

is highly correlated with long-horizon inflation expectations based on survey data

that are not used in the estimation. Second, the model estimates imply that agents

learn the inflation target of the central bank quickly relative to what is implied by

existing studies (e.g., Erceg and Levin (2003), Kozicki and Tinsley (2005)).

This paper is related to the literature which links term structure data with

changes in monetary policy.3 Papers most closely related to this work are Dewachter

and Lyrio (2008) and Dewachter (2008), who study the role of changing beliefs about

the inflation target in small scale New Keynesian models estimated using macro

and yield curve data. Dewachter and Lyrio (2008) assume that the actual target is

constant or chairman-specific but the perceived target by private agents drifts like

a random walk. Their setup implies that the difference between the actual target

and the perceived target can be nonstationary, preventing private agents from ever

learning the actual target. On the other hand, Dewachter (2008) assumes that the

actual target itself drifts ,like this paper, but allows for nonstationary real interest

rates. However, the unit root test results for interest rates in Table 1 provide little

evidence for nonstationary real rates.

Other related papers are Kozicki and Tinsley (2001, 2005) and Cogley (2005)

who try to identify shifts in monetary policy using term structure data in reduced-

form models. Kozicki and Tinsley (2001) argue that incorporating term structure

information into long-horizon inflation expectations reduces the variation of the

term premium and supports a more substantial role of short rate expectations in

explaining term structure data. Cogley (2005) conveys the same message by using

a VAR with drifting coefficients and volatilities for the short rate and a measure of

term spread. While this paper also finds a significant time variation of long-horizon

inflation expectations, it ties down the law of motion for macro variables and the
3A non-exhaustive list of papers on this topic includes Ang, Dong, and Piazzesi (2007), Bekaert

et. al. (2010), Cogley (2005), Dewachter (2008), Dewachter and Lyrio (2008), Kozicki and Tinsley

(2001, 2005), Rudebusch and Wu (2008).



3

learning speed of agents by DSGE restrictions.

The remainder of this paper is organized as follows. Section 2 presents the macro

DSGE model and discusses its log-linear approximation and equilibrium nominal

bond yields based on the log-linearized model. Section 3 discusses the empirical

analysis and Section 4 concludes.

2 Model

The model economy is a standard new Keynesian monetary DSGE model with opti-

mizing households and monopolistically competitive firms that face price stickiness

as in Woodford (2003).

2.1 Firms and Production Sector

I assume a continuum of monopolistically competitive firms in the intermediate prod-

uct markets. Firms in the competitive final-goods market combine the intermediate

goods (Yt(i)) into a composite good (Yt) according to the following technology:

Yt =
[∫ 1

0
Yt(i)

$t−1
$t di

] $t
$t−1

, $t > 1. (1)

$ is the elasticity of substitution among different intermediate goods. The demand

for each intermediate good and the expression for the aggregate price index are

obtained as follows.

Yt(i) =
[
Pt(i)
Pt

]−$t
Yt , Pt =

[∫ 1

0
Pt(i)1−$tdi

] 1
1−$t

. (2)

Pt(i) is the price of intermediate good i. All firms in the intermediate product

markets have production technologies that are linear in labor (Nt(i)), which they

hire on a competitive market.

Yt(i) = AtNt(i). (3)
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Total factor productivity At contains a stochastic trend and the growth rate of At

follows a stable AR(1) process with time-varying volatility.4

lnAt = lnAt−1 + ua,t , ua,t = (1− ρa)u?a + ρaua,t−1 + εa,t , εa,t ∼ iidN (0, σ2
a,t−1)

σ2
a,t = (1− νa)σ2

a + νaσ
2
a,t−1 + σw,awa,t , wa,t ∼ iidN (0, 1). (4)

The model features a nominal rigidity in the style of Calvo (1983). Each period

only (1 − θ) fraction of the firms can reoptimize their prices while the other firms

adjust their prices by the previous period’s inflation rate.5 The optimal price, P ot (i),

is determined by maximizing the following sum of discounted future expected profits:

Et

[ ∞∑
s=0

θsMt,t+s

(
P ot (i)

Pt+s−1

Pt−1
Yt+s(i)−Wt+sNt+s(i)

)]
. (5)

where Wt+s is the nominal wage, and Mt,t+s is a stochastic discount factor that firms

use to evaluate their future profit streams. In equilibrium, the stochastic discount

factor is identical to the one derived from household optimization problem.

If prices were flexible, the profit maximization of firms in monopolistically com-

petitive markets would make the price markup equal to ft = $t
$t−1 . This markup

determines the equilibrium output level known as the natural rate of output. I

assume an AR(1) process with time-varying volatility for the log markup.

ln ft = (1− ρf )ln f? + ρf ln ft−1 + εf,t , εf,t ∼ iidN (0, σ2
f,t−1)

σ2
f,t = (1− νf )σ2

f + νfσ
2
f,t−1 + σw,fwf,t , wf,t ∼ iidN (0, 1). (6)

4This specification for time-varying volatility does not guarantee the nonnegativity of the vari-

ance. Nonetheless, when the standard deviation of innovation to the volatility (σw,a) is small

relative to σ2
a and νa, the chance of hitting the zero bound is practically negligible (less than 5%),

which is indeed the case in my estimates. Alternatively we can assume an AR(1) process for the log

of the variance, which guarantees the nonnegativity. However, this assumption makes equilibrium

bond yields complicated nonlinear functions of time-varying volatility. The Gaussian specification

for the variance ensures that equilibrium bond yields are linear with respect to the time-varying

volatility.
5Christiano, Eichenbaum, and Evans (2005) use the same indexation rule by the lagged inflation.

I assume a full indexation scheme to make sure that firms which do not optimize their prices can

still catch up with trend inflation.
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2.2 Household Optimization

The economy is populated by a continuum of representative households who max-

imize their expected discounted lifetime utility with respect to consumption of the

final good Ct, hours worked Ht, and real money balance Mt
Pt

:

Et

 ∞∑
s=0

βs

(Ct+sAt+s
)1−σ − 1

1− σ
−
H

1+ 1
ν

t+s

1 + 1
ν

+ χmlog(
Mt+s

At+sPt+s
)

 . (7)

where σ is the constant relative risk aversion, and ν the short-run (Frisch) labor

supply elasticity. Consumption is deflated by the current technology level as in

Schorfheide (2005). This assumption makes the marginal benefit of working more

hours bounded despite a growing real wage and ensures a balanced growth path.6

Assuming asset markets are complete, the household is subject to the following

period-by-period budget constraint:

PtCt +
∞∑
n=1

Pn,t(Bn,t −Bn+1,t−1) +Mt + Tt = WtHt +B1,t−1 +Mt−1 +Qt + Πt (8)

where Pt is the price level, Pn,t the price of an n quarter bond, Bn,t bond holding, Tt

lump-sum tax or subsidy, Qt the net cash flow from participating in state-contingent

security markets, and Πt the aggregate profit.

The nominal stochastic discount factor between period t and t + s implied by

households’ optimal behavior is as follows:

Mt,t+s = βs
UC(Ct+s, Ht+s,

Mt+s

Pt+s
)Pt

UC(Ct, Ht,
Mt
Pt

)Pt+s
= βs(

Ct+s/At+s
Ct/At

)−σ
AtPt

At+sPt+s
. (9)

The government does not make any independent expenditure and its budget

constraint is simply
∑∞

n=1 Pn,t(Bn,t−Bn+1,t−1)+Mt−Mt−1+Tt = B1,t−1. Therefore,

the market clearing implies that the aggregate consumption will be equal to the

aggregate output (i.e. Ct = Yt).
6If σ is equal to 1 (the log utility case), this detrending is irrelevant because the marginal utility

of consumption grows at the same rate as real wage, making the marginal benefit of working more

hours stationary.



6

2.3 Monetary Policy and Inflation Target

The central bank adjusts the nominal interest rate according to a forward-looking

Taylor rule with policy inertia. The nominal target interest rate (i?t ) reacts to

expected inflation and the output gap in the following way:

(1 + it) = (1 + i?t )
1−ρi(1 + it−1)ρi exp{εi,t} , εi,t ∼ iidN (0, σ2

i,t−1)

1 + i?t = ((1 + r?)(π?t ))(
Et(πt+1)

π?t
)γp( YtY nt )γy

σ2
i,t = (1− νi)σ2

i + νiσ
2
i,t−1 + σw,iwi,t , wi,t ∼ iidN (0, 1)

(10)

where r? is the steady state real interest rate, which is equal to eu
?
a

β − 1, π?t the

time-varying inflation target of the central bank ,and Y n
t a natural rate of output,

which will prevail in a flexible price economy.

In the model, agents observe the current inflation target but do not distinguish

the permanent component (πP,?t ) from the transitory noise component (πT,?t ) as

in Erceg and Levin (2003). They face a signal extraction problem when forming

expectations about the future inflation target.

lnπ?t = lnπP,?t + lnπT,?t , lnπT,?t ∼ iidN (0, σ2
n)

lnπP,?t = lnπP,?t−1 + επ?,t , επ?,t ∼ iidN (0, σ2
π?,t−1)

σ2
π?,t = (1− νπ?)σ2

π? + νπ?σ
2
π?,t−1 + σw,π?wπ?,t , wπ?,t ∼ iidN (0, 1).

(11)

Under the above assumptions, agents filter out the transitory component by

Kalman filtering in order to forecast the future inflation target as follows.

Et(lnπ?t+j) = lnπ?t + ζt (∀j ≥ 1)

Et(lnπ?t+1) = Et−1(lnπ?t ) + Ωt
Ωt+σ2

n
(lnπ?t − Et−1(lnπ?t ))

ζt = σ2
n

Ωt+σ2
n

(ζt−1 − [lnπ?t − lnπ?t−1])

Ωt = Vt(Et(lnπ?t+1)− lnπP,?t ) , Ωt+1 = Ωt + σ2
π?,t −

Ω2
t

Ωt+σ2
n

(12)

where Ωt is the covariance matrix of the filtered estimate. ζt is the gap between the

expected future inflation target and the current inflation target, which measures the

degree of imperfect credibility of the central bank due to the imperfect information

of agents.

ζt =
σ2
n

Ωt + σ2
n

(ζt−1 − (lnπ?t − lnπ?t−1)) =⇒ ζt =
∞∑
j=0

wζ,j,t(lnπ?t−j − lnπ?t−j−1). (13)
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The evolution of the degree of imperfect credibility is tightly linked with the

signal to noise ratio (
σ2
π?,t

σ2
n

). When the ratio goes to ∞, Ωt
σ2
n

also approaches ∞ and

the target is fully credible, implying ζt is close to 0. On the contrary, if the signal

to noise ratio is sufficiently small, the gap between expected and current target

behaves like a nonstationary variable. Erceg and Levin (2003) assume that agents

use the steady state Kalman gain, which implies the constant covariance matrix of

the filtered estimate. In contrast, I consider a time-varying gain. This time-varying

gain is more suitable for the environment with time-varying volatility.

2.4 Log-linear Approximation of the Full Model

I log-linearize the system of equations around the deterministic steady state to

derive the macro dynamics implied by the model. To induce stationarity, output is

detrended by technological level while the inflation rate and the nominal interest rate

are detrended by the inflation target. Steady state values for the detrended variables

are defined by setting all the exogenous shocks at their unconditional means forever.7

The percentage deviation of a detrended variable dt from the steady state is denoted

by d̃t.

I define the vector of relevant detrended state variables xf1,t by

[ỹt, π̃t, ĩt, ỹn,t, ua,t, uf,t, Et(ỹt+1), Et(π̃t+1)+ζt]. Equilibrium conditions from the log-

linearized system result in the following system of equations.8

Γ0x
f
1,t = Γ1x

f
1,t1

+ Φεt + Πηt εt = [εa,t, εf,t, εi,t, wt]′ (14)

wt = lnπ?t − lnπ?t−1 , ηt = [ỹt − Et−1(ỹt), π̃t − Et(π̃t+1)− ζt] (15)

The following representation of the dynamics of state variables as the solution of

the above linear rational expectations system can be obtained by using a numerical

routine explained in Sims (2002):

xf1,t = T1x
f
1,t−1 + Tεεt + Ψx

∞∑
j=1

Ψj−1
f ΨεEt(εt+j). (16)

7Without uncertainty, firms do not need to reoptimize their prices. So in the steady state, the

actual output would be equal to the natural rate of output.
8The details of the solutions procedure can be found in the appendix available upon request.
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Now, define a new set of state variables x1,t by substituting Et(π̃t+1) for Et(π̃t+1)+

ζt in xf1,t. Notice Et(wt+1) = ζt and use the law of motion for ζt in equation (13).

Finally, we obtain the following solution of the log-linear model in terms of x1,t.

x1,t = Tc,t + T1x1,t−1 + Tε,tεt , εt = [εa,t, εf,t, εi,t, wt]′. (17)

2.5 No-arbitrage Term Structure Model

Following Jermann (1998) and Wu (2006), I combine the log-linear approximation

to the DSGE model, with asset pricing methods based on the log-normality of the

stochastic discount factor. The log stochastic discount factor implied by the macro

model is linear with respect to the detrended macro variables. By taking the log of

both sides in equation (9), we obtain the following expression:

mt,t+1 = lnMt,t+1 = lnβ − σ(yt+1− yt)− ua,t+1− πt+1 = Et(mt,t+1) + Λtεt+1 (18)

where Λt denotes a vector of market prices of risk, which is entirely restricted by the

structural parameters. Learning about inflation target introduces time variation in

the market prices of risk through the time-varying gain Ωt.9

From households’ optimal asset allocation, the risk-adjusted return on bonds of

different maturities must be equal to 1.

1 = Et(emt,t+1+pn−1,t+1−pn,t). (19)

Here pn,t is the log price of the the constant maturity n quarter bond. I define the

vector of nonstationary variables by x2,t = [lnAt, lnπ?t ]. The normality of innova-

tions implies the following equations for bond prices:

p1,t = Et(mt,t+1) +
Vt(mt,t+1)

2
= −it

pn,t = Et(mt,t+1 + pn−1,t+1) +
Vt(mt,t+1 + pn−1,t+1)

2

= p1,t + Et(pn−1,t+1) + Covt(mt,t+1, pn−1,t+1) +
Vt(pn−1,t+1)

2
(n ≥ 2).(20)

9For this reason, there is still a tight link between the level of volatility and market prices of

risk in the learning version unlike the essentially affine term structure models in Duffee (2002).
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Based on the above equations, I can recursively define log bond prices as func-

tions of [x1,t, x2,t, σ
2
t,l] in which σ2

t,l is [σ2
a,t, σ

2
f,t, σ

2
i,t, σ

2
π?,t + σ2

n + Ωt]′.10

pn,t = an,t + bn,1x1,t + bn,2x2,t + cn,tσ
2
t,l

yn,t = −an,t
n
−
b′n,1
n
x1,t −

b′n,2
n
x2,t −

cn,t
n
σ2
t,l. (21)

3 Empirical Analysis

3.1 Estimation Methodology and Data

I use Bayesian estimation methods which combine prior information on the model

parameters with the likelihood generated by sample data. On parameters for which

existing literature provides some guidance, I take informative priors. For others,

I take fairly diffuse priors. One popular method in the Bayesian estimation of a

stochastic volatility model is to use a multiple block Metropolis-Hastings algorithm,

which iteratively draws volatilities and parameters conditional on each other.11 In-

stead of integrating out stochastic volatilities in the likelihood evaluation, I obtain

the joint posterior draws of parameters and stochastic volatilities for empirical anal-

ysis.

I apply the econometric methods outlined in the previous section to U.S. macro

and treasury bond data. The macro variables are taken from the Federal Reserve

Database (FRED) at Saint Louis. The measure of output is per-capita real GDP,

which is obtained by dividing real GDP (GDPC1) by total population (POP). For

the inflation rate, the log difference of the GDP price index (GDPCTPI) is used.

The nominal interest rate is from the Fama CRSP risk free rate file. I select the

average quote of 3-month treasury bill rate. Five bond yields (1, 2, 3, 4, 5 year) are
10The derivation involves some approximation. The appendix provides the details of the deriva-

tion of log bond prices.
11This method has been used for Bayesian estimation of time-varying VARs in Cogley (2005) and

Benati (2007). Justiniano and Primiceri (2008) apply a similar method to estimate a large scale

DSGE model with time-varying volatility. The details of the estimation procedure are available

from the author upon request.
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from Fama CRSP zero coupon bond yields files. The estimation uses observations

from 1960:QI to 2004:QIV.12

Table 1 presents the sample moments of the nominal variables in my dataset.

Inflation and bond yields are highly persistent but the term spread between the long

rate and the short rate is not as persistent as bond yields. Actually, we can reject a

unit root for the term spread but not for bond yields. Also, we can reject a unit root

for the real short rate but not for inflation. These statistics are consistent with our

assumption of a nonstationary inflation target as a common trend for both inflation

and nominal interest rates.

3.2 Prior and Posterior Distribution of Parameters

Posterior means and 90% probability intervals for all the parameters with the corre-

sponding 90% prior probability intervals are reported in Table 2.13 There are some

parameters whose posterior distributions differ much from prior counterparts. For

example, the estimated volatility of noise is much smaller relative to the estimated

volatility of signal, although the two volatility parameters have the same prior dis-

tribution. The average signal to noise ratio ( σπ?
σn,π?

) at the posterior mean is 3.55. If

I set the signal to noise ratio in order to match the constant gain in Kalman filtering

used in Erceg and Levin (2003)’s calibration, it is roughly 0.14, which is much lower

than the estimate based on posterior draws. Erceg and Levin (2003) obtain this

number by minimizing the distance between the model implied expected inflation

and survey evidence over the period 1980:Q4 to 1985:Q4. This low signal to noise

ratio makes inflation much more volatile than observed over the period after the

mid 1980s.14

12To match the frequency of bond yields with that of the macro data, the monthly observations

of the treasury bill rate and bond yields are transformed into quarterly data by averaging the three

monthly observations per quarter.
13In computing prior intervals, I throw away draws, which imply the indeterminacy of solutions.

Because I impose a huge penalty for a draw implying indeterminacy when I evaluate likelihood in

running MCMC chains, all the posterior draws belong to the determinacy region by construction.
14The DSGE model in this paper allows the time variation of only the volatility of the signal.

In principle, this restriction on the variation of the signal to noise ratio can create a poor fit for
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In addition, reoptimizing of prices is found to be more frequent in the posterior

distribution than the prior one. A more frequent reoptimizing means a lower degree

of price rigidity. This finding is consistent with Dewachter and Lyrio (2008) who

find the estimated slope of Phillips curve is much steeper when term structure data

is included. The parameter is important in evaluating implications of a disinflation

experiment. When the nominal rigidity is low, the decline of inflation will lead to a

less severe output loss because prices rather than quantities adjust rapidly.

Table 3 shows prior and posterior means of standard deviations of measurement

errors for interest rates. The posterior mean of the standard deviation of the mea-

surement error of the short rate is 40 - 50 basis points but the posterior means of

standard deviations of other interest rates are much lower, ranging from 6 to 12

basis points.15 Those values are much lower than comparable estimates in Ang,

Dong, and Piazzesi (2007) who estimate different Taylor rules with term structure

data by using a no-arbitrage affine term structure model without DSGE restrictions.

The comparison suggests that the DSGE model achieve a reasonable degree of the

in-sample fit.

3.3 Learning, Inflation Target and Expected Inflation

The DSGE model in this paper assumes that the nonstationary inflation target

creates a common trend for inflation and nominal interest rates. Therefore, we can

test the plausibility of the estimated inflation target using various implications of

this assumption. First, interest rates and inflation rate detrended by inflation target

must be stationary. I perform unit root tests for the detrended short rate and the

detrended inflation rate using the estimated inflation target from the DSGE model.

Test statistics suggest that I can reject the existence of a unit root at 5% level in

inflation after the mid 1980s if the volatility of the noise indeed changed. However, Stock and

Watson (2007) show that the volatility of the transitory component of inflation measured by GDP

deflator did not change much over the period 1953:2004 while its permanent component changed a

lot, supporting my assumption.
15We have to multiply 4 to the numbers reported in the Table 3 in order to compute the annualized

percentage.
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both cases. This finding implies that the estimated inflation target can be a reliable

measure of the trend component of inflation and nominal interest rates.16

Second, if the estimated inflation target correctly captures the trend component

of inflation, the time variation of the target should be in line with the time varia-

tion of long-horizon inflation expectations. Here, I use a measure of long-horizon

inflation expectations constructed by Clark and Nakata (2008). This measure of

long-horizon inflation expectations splices 10-year-ahead expectations from the Sur-

vey of Professional Forecasters (1990-2007), 5- to 10-year-ahead expectations of the

survey of financial market participants (1981-89), and econometric estimates using

term structure data (1960-80).17 Correlation coefficients between model implied in-

flation expectations and survey data in Table 4 confirm that the model generates

inflation expectations highly correlated with survey data. Moreover, correlation

becomes stronger when the yield curve data are used in the estimation. While

near term inflation expectations are relatively well matched by the Bayesian Vector

Autoregression of the order (1) (BVAR (1)), which does not have trend inflation,

long-horizon inflation expectations are better matched by the DSGE model. In par-

ticular, BVAR (1) does not generate the volatile movements of long-horizon inflation

expectations during the 1970-80s as shown in Figure 2.

Kozicki and Tinsley (2005) model the imperfect information and learning of

agents about the inflation target of the central bank in a VAR model estimated

with output gap, inflation, federal funds rate, and 10-year bond yield. In the model,

inflation has a trend component. They distinguish central bank’s actual target from

the perceived target by private agents and assume agents do not directly observe

the actual target but try to adjust the perceived target toward the actual target

based on the deviation of the short rate from their expectations.
16In contrast, if I estimate inflation target without using yield curve data, unit roots for nominal

interest rates detrended by the estimated target are not statistically rejected.
17Splicing together different sources of information may increase the uncertainty of this measure

but the qualitative pattern of the time variation of this measure seems to be robust to this issue

as pointed by Clark and Nakata (2008). In fact, the same measure is used for the Federal Reserve

Board’s FRB/US model as a proxy for long run inflation expectations.
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Table 4 shows that the perceived target in Kozicki and Tinsley (2005) is more

highly correlated with mean one-year ahead inflation forecasts from survey data

than the estimated inflation target from the DSGE model.18 However, the correla-

tion with long-horizon inflation expectations is weaker. The difference boils down

to the fact that the perceived target in Kozicki and Tinsley (2005) continuously de-

clined during the mid-1980s, while the long-horizon inflation expectations and the

perceived target from the DSGE model defiend by the permanent component of the

inflation target ,Et(π?t+1), showed a temporary upward shift ,as shown in Figure 2.

Figure 3 shows the gap between the perceived target and the actual target

for both Kozicki and Tinsley (2005)’s model and the DSGE model in this paper.

Compared to the estimates in the DSGE model, the estimates of Kozicki and Tinsley

(2005) are highly persistent and much large. This difference is attributed to a fairly

slow learning about the actual target. Indeed, we cannot reject a unit root for the

estimated gap between the two targets while they are assumed to be cointegrated in

the model of Kozicki and Tinsley (2005). While the actual target and the perceived

target are cointegrated in the model, estimated gap between the two targets are

close to a random-walk.19 Such a big inertia of learning in Kozicki and Tinsley

(2005) produces observations somewhat at odds with the direct evidence on long-run

inflation expectations from survey data. For example, Figure 2 shows that survey

data on long run inflation expectations essentially stabilized at around 2% in the late

1990s but the estimated gap from Kozicki and Tinsley (2005)’s model is still high

in the same period and neither estimate seems to stabilize. In contrast, estimates

of inflation target from the DSGE model exhibit smaller fluctuations from the late

1990s. Unlike Kozicki and Tinsley (2005), the DSGE model implies that agents

learn relatively quickly. One motivation of the existing literature to introduce the

imperfect information about the inflation target is to explain the sluggish adjustment

of inflation expectations relative to actual inflation during the Volcker disinflation

period. In the DSGE model, this relatively sluggish adjustment is explained mainly
18I use data from 1959:Q2 to 2004:Q4 to estimate the same model in Kozicki and Tinsley (2005).
19The same issue arises in Dewachter (2008) who estimates a macro-finance model with imperfect

information on the nonstationary inflation target.
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by the time varying volatility of macro shocks rather than learning.20

4 Conclusion

This paper incorporates information from long-term interest rates to better un-

derstand the Federal Reserve’s (implicit) inflation target in a microfounded DSGE

setup. I identify the drifting inflation target of the central bank as the common

trend component for inflation and nominal interest rates. The model incorporates

the imperfect information and learning by agents about the inflation target of the

central bank.

The resulting estimates of inflation target are consistent with not only the trend

component of nominal interest rates and inflation used in the estimation but also

with long-horizon inflation expectations from survey data which are not used in

the estimation. The estimated volatility of shocks in the model implies that agents

learn more quickly than implied by the calibration in Erceg and Levin (2003) or

estimation results in Kozicki and TInsley (2005). The slow learning speed in the

existing literature tends to generate a very persistent gap between the actual target

and the perceived target even after the Volcker disinflation period of the early 1980s.

In contrast, the estimated learning speed from the DSGE model is more consistent

with the decline and stabilization of long-horizon inflation expectations since the

Volcker disinflation period.

5 Appendix

Under learning, market prices of risk are time-varying and we have to compute

coefficients in log bond prices at each period. Strictly speaking, time-varying market

prices of risk should be part of a model’s state vector. It can be achieved by including
20In fact, if we assume the constant volatility of macro shocks, the DSGE model generates the slow

adjustment of inflation expectations in expense of overpredicting actual inflation. For example, the

constant volatility version of the DSGE model overpredicts inflation by 0.51% at the third quarter

of 1981 compared to the stochastic volatility version.
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the covariance matrix of the filtered estimate Ωt in the state vector. However, doing

so would result in a quite complicated non-affine term structure model because Ωt

follows a nonlinear law of motion. I assume that agents update market prices of risk

each period but treat the updated values as if it would remain constant going forward

in time. Cogley (2005) uses a similar approximation in the context of making multi-

step forecasts in a VAR with time-varying parameters and argues that the first order

impacts of the approximation are small unless precautionary motives are strong. It

turns out that this approximation does not create any significant differences in bond

yields.21 With this approximation, we can obtain coefficients of log bond prices as

follows:

a1,t = 0 , b′1,1 = [0, 0,−1, 0, · · · , 0] , c1,t = 1
2 [Λ2

1,Λ
2
2,Λ

2
3,Λ

2
4,t]

an,t = a1,t + an−1,t + b′n−1,1Tc,t + cn−1,t((I − υ)σ2
l + Ωt+1 − νπ?Ωt) + 1

2cn−1,tDwc
′
n−1,t

b′n,1 = [0, 0,−1, 0, · · · , 0] + b′n−1,1T1 , b′n,2 = [0,−n] , Dw = diag([σ2
w,a, σ

2
w,f , σ

2
w,i, σ

2
w,π? ])

cn,t = 0.5(λm,t + λb,t + 2λb,m,t) + cn−1,tυ ,

λm,i,t = Λ2
i,t , λb,i,t = (bn−1,1Tε,i,t)2 , λb,m,i,t = Λi,t(bn−1,1Tε,i,t)(n ≥ 2)

σ2
l = [σ2

a, σ
2
f , σ

2
i , σ

2
π? + σ2

n].
(22)
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Table 1: Sample Moments

Variables mean standard deviation AR (1) ADF test statistic

inflation(πt) 3.439 2.397 0.891 -2.066

short rate(it) 5.210 2.911 0.947 -1.933

1 year bond yield(y4,t) 5.599 2.911 0.952 -1.809

2 year bond yield(y8,t) 5.809 2.859 0.958 -1.660

3 year bond yield(y12,t) 5.984 2.787 0.962 -1.520

4 year bond yield(y16,t) 6.116 2.752 0.965 -1.447

5 year bond yield(y20,t) 6.198 2.714 0.968 -1.388

term spread (y20,t − it) 0.989 1.007 0.829 -4.077?

ex post real rate(it − πt) 1.770 2.234 0.822 -4.116?

Notes: Statistics for the sample observations from 1960:QI to 2004:QIV. ? denotes

the rejection of a unit root at the 5% level.
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Table 2: Prior and Posterior Distribution

Prior P osterior

Parameter 90% Interval Mean 90% Interval

σ [1.19, 2.80] 2.48 [2.44, 2.52]

β [0.9965, 0.9995] 0.9994 [0.9993, 0.9995]

ν [1.19, 2.80] 2.30 [2.22, 2.38]

ln f? [0.052, 0.147] 0.105 [0.101, 0.110]

θ [0.593, 0.913] 0.262 [0.248, 0.274]

u?a [0.003, 0.007] 0.007 [0.0069, 0.0073]

γp [1.19, 2.79] 1.496 [1.424, 1.584]

γy [0.237, 0.558] 0.467 [0.447, 0.484]

ρa [0.136, 0.461] 0.032 [0.022, 0.046]

ρf [0.647, 0.958] 0.869 [0.861, 0.876]

ρi [0.338, 0.669] 0.265 [0.251, 0.277]

100σa [0.217, 0.795] 0.325 [0.292, 0.369]

100σf [0.213, 0.791] 0.459 [0.428, 0.489]

100σi [0.054, 0.199] 0.441 [0.441, 0.441]

100σπ? [0.053, 0.198] 0.103 [0.089, 0.118]

νa [0.101, 0.999] 0.9986 [0.9973, 0.9999]

νf [0.008, 0.906] 0.994 [0.989, 0.999]

νi [0.001, 0.899] 0.267 [0.208, 0.331]

νπ? [0.078, 0.976] 0.996 [0.993, 0.999]

1002σw,a [0.053, 0.198] 0.0248 [0.0226, 0.0269]

1002σw,f [0.054, 0.199] 0.0266 [0.0247, 0.0287]

1002σw,i [0.000, 0.003] 0.0002 [0.0002, 0.0003]

1002σw,π? [0.000, 0.003] 0.0004 [0.0004, 0.0004]

lnA0 [9.24, 9.90] 9.72 [9.70, 9.75]

100 lnπ?0 [0.104, 0.703] 0.599 [0.567, 0.626]

100σn,π? [0.053, 0.198] 0.029 [0.025, 0.032]

Notes: Prior intervals are computed based on 100,000 draws. I use 50,000 draws to compute

posterior means and intervals in the learning version.
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Table 3: Standard Deviations of Measurement Errors

100σu,1 100σu,2 100σu,3 100σu,4 100σu,5 100σu,6

Prior 0.063 0.063 0.063 0.063 0.063 0.063

(0.033) (0.033) (0.033) (0.033) (0.033) (0.033)

Posterior 0.130 0.031 0.017 0.017 0.016 0.019

(0.003) (0.002) (0.001) (0.001) (0.001) (0.002)

Ang, Dong, and Piazzesi (2007) 0.177 0.111 0.0056 0.034 0.046 0.064

(0.009) (0.006) (0.004) (0.002) (0.003) (0.004)

Table 4: Correlation between Model-implied Inflation Expectations

and Survey Data

Horizon DSGE DSGE (No Yield Data) BVAR (1) KT (2005)

1 year 0.9244 0.7990 0.8442 0.9568

Long run 0.8727 0.6999 0.1720 0.7597

Notes: “For 1 year-ahead inflation forecasts, I use the mean forecasts of GDP deflator from the

Survey of Professional Forecasters (SPF) published by the Federal Reserve Bank of Philadelphia

over the time period 1981:Q3 -2004:Q4. Long run inflation forecasts are from Clark and Nakata

(2008). In the last column, I compute the correlation between the perceived inflation target in

Kozicki and Tinsley (2005) and survey data.
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Figure 1: Time Series Plots of Data
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Notes: Per capital real GDP, inflation from GDP deflator, 3 month Treasury bill

rate, 1, 2, 3, 4, 5 year Treasury bond yields from 1960:Q1 to 2004:Q4 are plotted.
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Figure 2: Smoothed Estimates of Perceived inflation target
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Figure 3: Smoothed Estimates of the Gap between Perceived Target

and Actual Target
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