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Abstract

This paper estimates a model in which persistent fluctuations in expected con-

sumption growth, expected inflation, and their time-varying volatility determine as-

set price variation. The model features Epstein-Zin recursive preferences, which de-

termine the market price of macro risk factors. The analysis of the U.S. nominal

term structure data from 1953 to 2006 shows that agents dislike high uncertainty

and demand compensation for volatility risks. And the time variation of the term

premium is driven by the compensation for inflation volatility risk that is distinct

from consumption volatility risk. The central role of inflation volatility risk in ex-

plaining the time-varying term premium is consistent with other empirical evidence

including survey data. In contrast, the existing long-run risks literature empha-

sizes consumption volatility risk and ignores inflation-specific time-varying volatil-

ity. The estimation results of this paper suggest that inflation-specific volatility

risk is essential for fitting the time series of the U.S. nominal term structure data.
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1 Introduction

Understanding the sources of risk implied in nominal bond yields is an important

issue in asset pricing. In particular, recent empirical research points out that term

premia of long-term bonds are positive on average, time-varying (e.g., Campbell

and Shiller (1991)), and highly related with macro factors (e.g., Ludvigson and Ng

(2009), Barillas (2010) and Joslin et. al. (2009)). To rationalize positive term

premia of nominal bonds in an equilibrium asset pricing framework requires that

the real payoffs of nominal bonds vary negatively with investors’ marginal utility.

In the context of consumption-based asset pricing models, this requirement is

often satisfied by a negative covariance between consumption growth and infla-

tion. The negative covariance implies that nominal bonds pay less in real terms

when consumption growth is low and investors’ marginal utility is high.1 Moreover,

the negative covariance should move in a counter-cyclical way to generate counter-

cyclical term premia. While counter-cyclical risk aversion through habit formation

(Wachter (2006)), learning of long run expected consumption growth and inflation

(Piazzesi and Schneider (2006)), or time-varying volatility of consumption growth

(Bansal and Shaliastovich (2010)) can create this property, time-varying volatility

of expected inflation is another source of time-varying term premia.

This paper specifies and estimates an equilibrium term structure model in which

four macro risks-expected consumption growth, expected inflation, consumption

volatility, and inflation volatility- drive asset price variation. Drawing on the long-

run risks model developed by Bansal and Yaron (2004) and Bansal and Shaliastovich

(2010), I combine persistent fluctuations in consumption growth and inflation with

Epstein-Zin (1989) preferences. This combination generates compensation for long-

run risks in expected consumption growth, expected inflation, their volatilities, and

the short-run unexpected fluctuations in consumption growth and inflation. Using

a Bayesian approach, I estimate the model with U.S. nominal term structure data

from 1953:Q1 to 2006:Q4. From the estimation, I recover the expectations and
1For example, Bansal and Shaliastovich (2010) , Piazzesi and Schneider (2006), and Wachter

(2006) explicitly introduce this feature.
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volatility of consumption growth and inflation implied by nominal bonds data. Two

main findings emerge out of the empirical analysis.

First, posterior distributions of parameters indicate that expected consumption

growth and expected inflation are highly persistent and that agents dislike high

volatility and prefer the early resolution of uncertainty. Second, inflation volatility

is a predominant risk factor in explaining the time variation of the term premia.

Additionally, estimates of inflation risk factors are in line with survey data evidence.

The previous empirical studies on long-run consumption risks highlight the dif-

ficulty in identifying the persistence parameter of consumption growth solely based

on consumption data.2 The inclusion of asset price data in the estimation alleviates

this problem and provides a tight posterior interval for the persistence parameter in

spite of a wide prior interval. Estimated risk aversion and the intertemporal elastic-

ity of substitution (IES) are both higher than one, implying that agents are averse

to volatility risks.3

In contrast to Bansal and Shaliastovich (2010), consumption volatility risk plays

only a limited role in explaining the time-variation of term premia. However,

their model allows time-varying volatility for consumption growth only and ignores

inflation-specific time-varying volatility.4 This paper uses a more flexible set-up

that incorporates inflation volatility risk as well as consumption volatility risk. In

addition, Bansal and Shaliastovich (2010) calibrate their model and do not pro-

vide estimates of consumption volatility risk that can be checked with survey data

evidence. When estimates of volatility are compared with survey data, I find a sig-

nificant correlation between the estimates of inflation volatility and inflation forecast

uncertainty from survey data but only a weak correlation for consumption volatil-

ity. This finding suggests that in fitting the time series of the U.S. nominal term

structure data, consumption volatility risk often emphasized in the long-run risks

literature is not as important as inflation-specific volatility risk.
2See Ma (2007) for this point.
3Estimates of preference parameters reported in the empirical analysis of fully specified general

equilibrium models with term structure data (e.g., van Binsberg et al. (2010)) also imply investors’

aversion to high uncertainty.
4Throughout this paper, inflation volatility and inflation-specific volatility mean the same thing.
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The central role of inflation volatility in determining the time variation of term

premia is consistent with empirical evidence from statistical models. Using the

regression analysis of an international panel dataset, Wright (2011) argues that in-

flation uncertainty measured by survey data explains a substantial part of the time

variation of term premia in nominal government bonds.5 While Wright (2011) does

not impose any equilibrium restrictions on the relation between inflation uncer-

tainty and term premia in his analysis, I reach a similar conclusion by estimating

an equilibrium term structure model. Since inflation volatility is heavily dependent

on the way that monetary policy responds to inflationary pressures, this finding can

be regarded as preliminary evidence for the connection between term premia and

monetary policy.6

I proceed as follows: Section 2 describes the model economy and derives equi-

librium bond yields. Section 3 explains the econometric methodology. Section 4

provides estimation results based on the empirical analysis of U.S. data. Section 5

contains concluding remarks. The appendix explains the construction of empirical

measures of consumption and inflation uncertainty based on survey data.7.
5Barillas (2010), Joslin et. al. (2009), and Ludvigson and Ng (2009) suggest that real factors

rather than inflation explain variations in term premia. Because their models do not explicitly

consider time varying volatility of macro variables, their results are not in conflict with the empirical

evidence in Wright (2011) .
6Gallmeyer et al. (2008) endogenize the inflation process given a monetary policy rule and show

that term premium dynamics can be highly sensitive to monetary policy. They argue that a more

aggressive policy response to inflation reduces both inflation volatility and long term nominal bond

yields.
7Details of the model solution and econometric methodology are given in a separate web appendix

available on www.taeyoung-doh.net
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2 Model

2.1 Preference and Shocks

I consider a discrete-time endowment economy. As in Bansal and Yaron (2004),

investors have Epstein-Zin (1989) recursive preferences.

Ut = [(1− δ)C
1−γ
θ

t + δ(EtU
1−γ
t+1 )

1
θ ]

θ
1−γ . (1)

The time discount factor (δ), risk aversion (γ ≥ 0), and the intertemporal elas-

ticity of substitution (IES : ψ ≥ 0) characterize preferences. Here, θ is equal to
1−γ
1− 1

ψ

. The standard expected utility function is a special case of the above recursive

preferences when γ is equal to 1
ψ .

Epstein-Zin (1989) shows that the logarithm of the real stochastic discount factor

has the following form:

mr,t+1 = θ log δ − θ

ψ
gc,t+1 + (θ − 1)rc,t+1. (2)

Here, gc,t+1 is the log growth rate of aggregate consumption and rc,t+1 is the log of

the return on an asset that pays aggregate consumption as its dividends.

The log of the nominal discount factor in this economy can be constructed by

subtracting the logged inflation rate from the log of the real discount factor

mt+1 = mr,t+1 − πt+1. (3)

πt+1 is the logged inflation rate at t + 1. While rc,t+1 is not directly observable, I

can approximate it as a function of state variables that drive the dynamics of gc,t+1

and πt+1 by using the following no-arbitrage restriction,8

Et(emt+1+πt+1+rc,t+1) = 1. (4)
8Following Bansal and Yaron (2004), I conjecture that the log price consumption ratio of an

asset which pays per-period consumption as its dividend is affine with respect to long-run risks in

order to approximate the return on consumption claims. This strategy results in constant market

prices of risks. In contrast, Le and Singleton (2010) propose that the price consumption ratio can

be expressed as a quadratic function of state variables governing the evolution of consumption and

inflation. While they incorporate time-varying market prices of risks in this way, they do not assign

specific economic meanings to the state variables.
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Exogenous processes for consumption growth and inflation contain predictable

components which correspond to expected consumption growth and expected in-

flation. As in Piazzesi and Schneider (2006), I assume that expected consumption

growth and expected inflation are both dynamically and contemporaneously corre-

lated. Furthermore, I allow time-varying volatilities for both consumption growth

and inflation, and assume that there is regime-dependent heteroskedasticity in inno-

vations of volatility processes. The following equations describe stochastic processes

for the evolution of consumption growth and inflation: gc,t+1

πt+1

 = µ+Xt + Σtηt+1 , Σt =

 σ1,t 0

0 σ2,t

 , Xt =

 x1,t

x2,t

 . (5)

Xt+1 = ρXt + ΦΣtet+1 , Φ =

 φ11 φ12

φ21 φ22

 , ρ =

 ρ11 ρ12

ρ21 ρ22

 . (6)

σ2
i,t+1 = (1− νi)σ2

i + νiσ
2
i,t + σi,w(St+1)wi,t+1 , (i = 1, 2). (7)

ηt+1

et+1

wt+1

 ∼ iidN
(

0, I
)
, St =

 1, with probability α

2, with probability 1-α.

where µ is a vector consisting of the unconditional means of consumption growth

and inflation; ρ and Φ govern the persistence and the volatility of long run risk

components Xt, respectively; St+1 is an indicator for volatility regimes; and νi and

σi,w(St+1) control the persistence and conditional volatility of shocks to consumption

growth volatility and inflation volatility.9 For analytical tractability, I assume that

all the innovations are independent from each other. In this model, different regimes

can distinguish periods of volatility spikes from more tranquil periods.

A large body of empirical research has provided evidence of substantial changes

in the volatility of US macroeconomic variables over the postwar period, although
9Since the stochastic volatility terms are assumed to be normally distributed, there is a possibility

to hit the zero bound, although chances are very small (less than 5 %) for the range of parameters

considered in the empirical analysis. However, simulated moments of observed variables are virtually

the same even if we do not truncate stochastic volatilities at zero. Also, while not all the parameters

in Φ are exactly identified because only ΦΣtΣ
′
tΦ
′ shows up in the likelihood function, data can still

provide information on the most probable area of these parameters.
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there are still debates on the sources of these changes.10 Changing macroeconomic

volatility has direct implications for macro risks priced in financial assets. In the

model described above, not just realized consumption growth and inflation, but also

expected consumption growth and expected inflation exhibit time varying volatil-

ity. Therefore, this model ought to be consistent with the available evidence for

the volatility of expected macro variables. Forecast uncertainty from the survey

data provides an empirical proxy for the time-varying volatility of expected macro

variables and can be used to test the relevance of the model.

By restricting some parameters in the above specification, we can obtain simpler

models which are close to Bansal and Shaliastovich (2010) and Piazzesi and Schnei-

der (2006). For example, if I assume that inflation does not affect real variables and

ignore inflation-specific time-varying volatility, the specification is close to Bansal

and Shaliastovich (2010)11. On the other hand, if I assume that volatility of both

consumption growth and inflation is constant but allow the real impacts of inflation,

the model is close to Piazzesi and Schneider (2006).

2.2 Equilibrium Bond Yields

Equilibrium bond yields can be derived based on the stochastic discount factor

implied by the model. In the model, the exact form of the return on consumption

claims is not known. As in Bansal and Yaron (2004), I draw on the standard

log-linearization of returns using the log price-consumption ratio (zt) to get an
10Stock and Watson (2002) provide a survey of the literature. The role of monetary policy in

volatility changes is controversial. While Sims and Zha (2006) and Justiano and Primiceri (2008)

argue that policy shifts were not the main factors of changes in the volatility of US macro variables,

Boivin and Giannoni (2006) stress the role of monetary policy shifts.
11However, this set-up does not nest Bansal and Shaliastovich (2010) because consumption volatil-

ity also affects inflation process in their model. This means σ1,t = σ2,t = σt in the notations used

in this paper.
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approximate form for the return on consumption claims.12

rc,t+1 = κ0+κ1zt+1−zt+gc,t+1 , zt = A0+A1Xt+A2,1σ
2
1,t+A2,2σ

2
2,t , A1 = [A11, A12].

(8)

Expected inflation (x2,t) affects the real economy because it predicts future ex-

pected consumption growth (x1,t+1) in the case of ρ12 6= 0. For the same reason,

the price consumption ratio is also affected by expected inflation. As mentioned in

Bansal, Kiku, and Yaron (2007), κ0 and κ1 are constants determined by the mean

log price consumption ratio z, and given by,

κ1 =
exp(z)

1 + exp(z)
, κ0 = ln(1 + exp(z))− κ1z. (9)

We first plug equation (8) into equation (4) and obtain three restrictions for

A0, A1, and A2,i (i = 1, 2). This gives A0 and A1 as functions of z and parameters

determining preferences and shock processes. Then z can be found numerically by

solving the fixed point problem z = A0(z) + A2,1(z)σ2
1 + A2,2(z)σ2

2. This nonlinear

equation can be transformed into an equation with respect to κ1. Since κ1 stays in

the open interval (0, 1), we can check the uniqueness of the solution by checking its

existence in fine grids over the unit interval. Once the unique solution is found, we

can derive the following expressions for A1, and A2,i,13

A11 =
(1− κ1ρ22)(1− 1

ψ )

κ2
1(ρ11ρ22 − ρ12ρ21)− (ρ11 + ρ22)κ1 + 1

, A12 =
κ1ρ12(1− 1

ψ )

κ2
1(ρ11ρ22 − ρ12ρ21)− (ρ11 + ρ22)κ1 + 1

A21 =
θ2((1− 1

ψ )2 + (κ2
1[A11φ11 +A12φ21]2))

2θ(1− κ1ν1)
, A22 =

θ2κ2
1[A11φ12 +A12φ22]2

2θ(1− κ1ν2)
. (10)

It follows that a positive shock to expected consumption growth increases the

price consumption ratio only if the IES is greater than 1. Moreover, a positive
12The accuracy of this approximation turns out to be reasonably good as discussed in Bansal,

Kiku, and Yaron (2007) and Beeler and Campbell (2008) once the mean price consumption ratio is

found in a model-consistent way. I compare the first and second moments of the log price consump-

tion ratio from the log-linearization with the counterparts obtained from a numerical method to

check the accuracy of the approximation. The web technical appendix shows that the two methods

lead to fairly similar moments.
13The details of the derivation can be found in the web technical appendix.



8

shock to expected inflation decreases the price consumption ratio if a high expected

inflation predicts a low expected consumption growth (i.e. ρ12 < 0) and the IES is

greater than 1. For volatility risk, high volatility decreases the price consumption

ratio only if θ is negative. When the IES is greater than 1, θ is negative only if γ is

greater than 1. This configuration of parameters implies that agents prefer the early

resolution of uncertainty because γ is bigger than 1
ψ .14 Other things being equal,

an increase in the persistence of shocks to expected consumption growth, expected

inflation, or volatility leads to an increase in the absolute values of coefficients A1

, A2,1 and A2,2. Hence, the price consumption ratio is more sensitive to persistent

risk factors.

Using the approximate return on consumption claims, we can express the nega-

tive log-stochastic discount factor in terms of risk factors and their innovations,

−mt+1 = Γ0 + Γ′1xt + Γ′2σ
2
t + Λ′ζt+1 (11)

ζt+1 = [σ1,tη1,t+1, σ2,tη2,t+1, σ1,te1,t+1, σ2,te2,t+1, σ1,w(St+1)w1,t+1, σ2,w(St+1)w2,t+1]′,

where Γi and Λ are factor loadings and market prices of risks, respectively. The

market prices of risks determine the magnitude of risk compensation. We can express

these market prices of risks in terms of parameters governing preferences and shock

processes, as follows:

Λ = [λη,1, λη,2, λe,1, λe,2, λw,1, λw,2],

λη,1 = γ , λη,2 = 1,

λe,1 = (1− θ)κ1(A11Φ11 +A12Φ21) , λe,2 = (1− θ)κ1(A11Φ12 +A12Φ22),

λw,1 = (1− θ)κ1A21 , λw,2 = (1− θ)κ1A22. (12)

In the special case of power utility, γ = 1
ψ and θ = 1. Therefore, shocks to

expected consumption growth, expected inflation, and volatility are not priced risk

factors. The separation of risk aversion from the inverse of the IES in Epstein-Zin

(1989) preferences allows separate compensation for these shocks.
14If γ is equal to 1

ψ
as in the power utility case, agents are indifferent about the timing of the

resolution of uncertainty. They prefer the late resolution of uncertainty if γ is less than 1
ψ

.
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The covariance of inflation and the real stochastic discount factor determines the

inflation risk premium. In the model, unexpected short-run fluctuations in inflation

are not related to the real economy and hence, there is no inflation risk premium for

the short rate since covt(πt+1,m
r
t+1) = covt(η2,t+1,m

r
t+1) = 0. However, long-term

bonds command inflation risk premia because variations in expected inflation are

correlated with the real stochastic discount factor. This specification is consistent

with the observation that the component of inflation priced in bond yields is the

persistent component of inflation, which is a shock to expected inflation.15

Using the log nominal stochastic discount factor, I can compute arbitrage-free

nominal bond prices from the Euler equation. This calculation can be done relatively

easily as shown below, because the nominal stochastic discount factor obtained from

the log-linearization of rc,t+1 is normally distributed.

epn,t = Et(emt+1+pn−1,t+1) =⇒ pn,t = Et(mt+1 + pn−1,t+1) +
Vt(mt+1 + pn−1,t+1)

2
,

(13)

where pn,t is the log of the price of a nominal bond whose time to maturity is n

periods. Since mt+1 is affine with respect to risk factors, we can also express pn,t

as an affine function of risk factors. Hence, the model implied bond yields are also

affine functions of risk factors, given by the following relation,

yn,t = −pn,t
n

= an + bnXt + cnσ
2
t , σ

2
t = [σ2

1,t, σ
2
2,t]
′. (14)

Since volatility regimes of σ2
i,t are i.i.d., the current regime does not provide any

information about future volatility. Hence, coefficients in equilibrium bond yields

do not depend on the current regime.
15See Kim (2008) for evidence supporting this view. D’Amico, Kim, and Wei (2008) show that

inflation risk premium accounts for only 1% of the variance in the short rate while the portion

increases for long-term bonds.
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3 Data and Econometric Methodology

In this section, I describe the dataset and explain the Bayesian estimation methods

used in this paper.16

3.1 Data

I use the same dataset as Piazzesi and Schneider (2006) except for a slight change in

the sample period.17 Aggregate consumption growth is from the quarterly National

Income and Product Account (NIPA) data on nondurables and services. Following

Piazzesi and Schneider (2006), I use the price index for NIPA data. The three month

Treasury Bill rate from the CRSP Fama risk-free rate file is used for the short term

interest rate. One, two, three, four, and five year bond yields are extracted from

the CRSP Fama-Bliss discount bond files. Figure 1 shows time series plots of all

the observed variables used in the estimation.

3.2 Econometric Methodology

Since bond yields are affine functions of the four risk factors, it follows that we can

perfectly recover expected consumption growth, expected inflation, and volatility if

we have observations for bond yields of four different maturities. This is possible

because agents in the model economy have full information on long-run risks as well

as time-varying volatility, and they use that information to price financial assets. Of

course, in reality, this is a very strong assumption;18 however, under the assumption

that the above model is a good approximation to the true data generating process,
16More details related to the econometric methodology are discussed in the web technical ap-

pendix.
17The sample period in Piazzesi and Schneider (2006) is from 1952:Q2 to 2005:Q4 while here it

is from 1953:Q1 to 2006:Q4.
18Indeed, Joslin et. al. (2009) and Kim (2008) point out that macro risks are not spanned by

bond yields of different maturities. I introduce bond-specific pricing errors so that macro risks are

not completely spanned by the cross-sectional yield curve data. Nonetheless, the yield curve can

still provide information on macro risks.
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bond yields of different maturities can provide rich information about expected con-

sumption growth, expected inflation, and volatility. Based on this idea, Bansal,

Kiku, and Yaron (2007) estimate expected consumption growth by regressing real-

ized consumption growth on the asset market data. While this approach is very easy

to implement, it does not link parameters governing preferences and shock processes

with the estimates of risk factors.

In this paper, I jointly estimate parameters and risk factors based on the follow-

ing state space representation,

F1,t = (I − T1(ϑ))F1(ϑ) + T1(ϑ)F1,t−1 +Q1(ϑ)F2,t−1et,

F2,t = (I − T2(ϑ))F2(ϑ) + T2(ϑ)F2,t−1 +Q2(ϑ, St)wt,

Zt = Az(ϑ) +Bz(ϑ)Ft + CzFtξt (15)

F1,t = [Xt, Xt−1] , F2,t = σ2
t , Ft = [F1,t, F2,t]

ϑ = [ρ,Φ, σ2
i , νi, σw,ij , α, µi, δ, ψ, γ, σu,k] , (i, j = 1, 2) , (k = 1, · · · , 6)

where Zt is a vector of observed variables including consumption growth, inflation,

and bond yields. ϑ is a vector of structural parameters in the model and ξt denotes

a vector consisting of transitory shocks to consumption growth and inflation, and

bond-specific measurement errors. Time-varying volatility introduces nonlinearities

into the state transition equation through the term F2,t−1et. While agents in the

model are assumed to have full information on current and past state variables,

an econometrician does not have such a knowledge and has to solve a filtering

problem to recover state variables from the observed variables. The presence of

nonlinearities complicates the filtering problem. However, the above model has a

linear and Gaussian state space representation once we condition on a series of

stochastic volatilities.19 Also, conditional on parameters and regimes governing the

variance of innovations, volatilities follow Gaussian processes. Finally, conditional

on parameters and volatilities, we can recover the volatility regimes of innovations

to stochastic volatility by applying the Hamilton (1989) filter.
19For a similar reason, conditional on the information set of agents, the log stochastic discount

factor follows a normal distribution. I appreciate the comment from an anonymous referee to clarify

this issue.
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I use Bayesian methods that draw parameters, volatilities, and the volatility

regimes of innovations to stochastic volatility iteratively.20 By doing so, I can char-

acterize the joint posterior distributions of parameters and volatilities which are

updated from prior distributions, reflecting new information given by data.

4 Estimation Results

4.1 Prior Distributions of Parameters

There are two sets of parameters in the model. For the set of parameters related to

the stochastic processes for consumption growth and inflation, the prior distributions

are set to be roughly consistent with i) sample moments of consumption growth

and inflation and ii) calibrated values in the existing literature. For preference

parameters, prior means are set to be close to calibrated values in Bansal and Yaron

(2004). Prior standard deviations of risk aversion and the IES are set wide enough

to cover values commonly reported in other studies. Table 1 summarizes the prior

information for all the parameters.

4.2 Posterior Analysis

4.2.1 Posterior Distribution

Prior beliefs about the parameters can be revised by using new information from

the data. Table 2 illustrates how the data refine our beliefs about the parame-

ters by contrasting prior distributions with posterior distributions. To identify the

additional information from including term structure data, I also report posterior

distributions of parameters from the estimation using only macro data.
20Jacquier, Polson, and Rossi (1994) propose Bayesian methods to draw volatilities conditional

on parameters by using a Metropolis-Hastings algorithm. While they can compute the exact con-

ditional distributions of parameters, this is not feasible in the model considered here. I run another

Metropolis-Hastings algorithm to draw parameters conditional on volatilities and regimes. The

details of the algorithm are explained in the appendix.
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For persistence parameters of expected consumption growth and expected in-

flation, the posterior intervals are much narrower than prior intervals when term

structure data are used in the estimation. This finding indicates that there is a lot

of information about these parameters in the data. In contrast, when I use only

the data on consumption growth and inflation, the posterior intervals are as wide as

the prior intervals. This finding suggests that identifying persistence parameters of

expected consumption growth and expected inflation is difficult using only informa-

tion from the macro data.21 A similar observation can be made for the persistence

of volatility.

Compared to the prior distribution, the posterior intervals for risk aversion (γ)

and the IES (ψ) are much narrower, suggesting that the data provide rich infor-

mation on these parameters. In particular, the posterior distribution of the IES is

slightly higher than 1 with a tight interval. Risk aversion is moderately high, with a

posterior distribution around 9.5, which is comparable to 10 used in the calibration

of Bansal and Shaliastovich (2010). The posterior distributions of risk aversion and

the IES together imply that agents dislike high uncertainty and prefer the early

resolution of uncertainty. With this configuration of preference parameters, agents

may demand sizeable compensation for taking volatility risk. Interestingly, when

volatility processes are homoskedastic, the estimates of risk aversion and the IES

imply much lower market prices of volatility risks as shown in Figure 2.22

For some parameters, posterior mean values are quite different from prior mean

values. For example, the probability of a high variance regime of volatility process is

very low in the posterior distribution from the estimation using the term structure

data. The posterior mean is about 0.023 indicating that we can observe a high

regime once in eleven years on average. However, the probability increases to 0.653

in the posterior distribution from the estimation using only the macro data. In
21This may be a motivation for Hansen and Sargent (2009) who argue that the difficulty in

distinguishing a consumption growth process with a small but highly persistent component from

an i.i.d process generates model uncertainty premia in asset prices.
22While regime-dependent volatility processes affect the amount of volatility risks, they do not

change market prices of volatility risks. The estimation results illustrate a nontrivial interaction

between preference parameters and parameters governing shock processes.
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the estimation results using the term structure data, the differences across regimes

are much starker than those estimated by using only the macro data. This finding

implies that a volatility process with infrequent large spikes is in line with the term

structure data.

4.2.2 Macro Implications

To asses the model’s fit for macro variables, I compute the posterior moments for

the macro variables, which can be compared with sample moments from the data.

Table 3 provides information about the model’s implications for dynamics of con-

sumption growth and inflation. The average level, volatility, and persistence of

consumption growth and inflation as well as the correlation of the two variables are

computed using posterior draws of parameters and volatilities.

Some overlaps between confidence intervals of sample moments and the corre-

sponding posterior intervals of moments other than the sample correlation between

inflation and consumption growth are observed. Model estimates create a slightly

positive correlation between consumption growth and inflation, in spite of the fact

that posterior distributions of parameters governing dynamic and contemporaneous

correlation between expected consumption growth and expected inflation are con-

centrated around negative values. The time series plot of estimates for expected

consumption growth and expected inflation, as shown in Figure 3, provides a hint

to the cause of this mismatch. While recessions during the 1970s were character-

ized by a spike in expected inflation and a drop in expected consumption growth,

such a negative comovement is much less pronounced in periods since the early

1980s. In fact, when I use estimates of long-run risks up to only the late 1970s,

the model implies a strongly negative correlation between consumption growth and

inflation. In contrast, the negative correlation is smaller if I use a subsample after

the early 1980s. Estimates of long-run risks imply a significantly positive correla-

tion between consumption growth and inflation in the second subsample, resulting

in the mismatch of the full-sample moment. Fixing this mismatch may require the

generalization of the model structure by allowing the time variation of parameters
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governing shock processes, although such an extension can be very challenging in

solving and estimating the model.

Estimates of expected consumption growth and expected inflation are functions

of observed variables used in the estimation. Therefore, they may be sensitive to the

data included in the estimation. One way to check if the model-implied estimates

reasonably capture agents’ expectations is to connect these estimates with observed

proxies for expectations that are not directly used in the estimation.

Table 4 provides results from regressing the median one-quarter ahead forecasts

of consumption growth and CPI inflation from the Survey of Professional Forecast-

ers (SPF, hereafter) on estimates of expected consumption growth and expected

inflation from the model.23 R2 statistics reported in Table 4 show that model-

implied expectations explain survey data for inflation well, but not for consumption

growth. A similar pattern is observed when I extract information on uncertainty

about consumption growth and inflation from survey data. I construct two proxies

for uncertainty from the SPF. The first measure is obtained by averaging uncer-

tainty in the density forecast of each individual forecaster.24 The second measure is

simply the dispersion in the point forecast of each individual forecast.25 For both

measures, the model does a good job in explaining inflation uncertainty. However,

it does a relatively poor job in explaining consumption uncertainty, as shown in

Table 5.

While the poor correlation of estimates of consumption risk factors with survey

data clearly suggests that a more general specification of shock processes might be

necessary, some part of it can be attributed to the Federal Reserve’s prolonged easing

policy after the 2001 recession. As evident in Figure 1, the short rate remained low

until 2004:Q2 after the 2001 recession, whereas realized consumption growth started

to rebound in 2002. Indeed, Smith and Taylor (2009) argue that long term interest

rates became less responsive to macro variables during this period as a result of
23Using the median one-year forecasts and the corresponding model-implied expectations delivers

virtually same results.
24The appendix describes the details of the construction for this measure.
25I get rid of outliers which are more than two standard deviations away from the mean forecast.
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the Federal Reserve’s policy that deviated a lot from the Taylor rule prescription.26

Indeed, if I use observations up to 2001:Q4, estimates of consumption risk factors

such as expected consumption growth and consumption volatility are moderately

correlated with survey data, as shown in Tables 1 ∼ 2.

4.2.3 Term Structure Implications

To evaluate the model’s fit for term structure, I compare posterior means of yield

curve moments with sample moments from the data. Table 6 shows that the uncon-

ditional moments of level, volatility, and persistence of the yield curve from sample

data are very close to the corresponding posterior means. Moreover, the mean ab-

solute pricing errors for bond yields of maturities longer than one year are pretty

small, ranging from 4.3 basis points to 6.1 basis points. These numbers are compa-

rable to average pricing errors reported in the literature on estimating no-arbitrage

macro-finance term structure models (e.g., Bikbov and Chernov (2010)).

In the model, time-varying term premia can be determined by either consump-

tion volatility or inflation volatility. To determine which factor is more important,

the following counterfactual exercise is run.27 I compute the model-implied term

premium for the ten-year bond yield by keeping inflation volatility constant at the

time-series average of the posterior mean estimates and compare it with the coun-

terpart based on posterior mean estimates of inflation volatility. In both cases, I

use posterior mean estimates of consumption volatility and parameters. The model-

implied term premium for the ten-year bond yield in Figure 5 shows that there is

a huge difference in the time-variation of the term premium when the variation of

inflation volatility is suppressed. In particular, the decline of the term premium af-

ter the Volcker period of the early 1980s documented in the reduced-form empirical

studies of the U.S. yield curve (e.g., Wright (2011) ) cannot be detected in the case

of the counterfactual constant inflation volatility.
26However, Bernanke (2010) argues that if we consider real-time inflation forecasts rather than the

realized inflation data to measure the inflation gap, this policy was not excessively loose compared

to the benchmark Taylor rule.
27I am grateful for an anonymous referee who suggested to perform this exercise.
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The key role played by inflation volatility in explaining the time-varying term

premium seems to be at odds with the emphasis on consumption volatility risk

in the existing long-run risks literature. In particular, Bansal and Shaliastovich

(2010) show that consumption volatility risk in a standard long-run risks model can

explain the predictability of term premia. The analysis in this paper differs from

Bansal and Shaliastovich (2010) in two important respects. First, this paper allows

an inflation-specific volatility risk in contrast to Bansal and Shaliastovich (2010),

who assume that consumption growth and inflation are drive by common volatility

risks. Therefore, their measure of consumption volatility mixes both consumption

volatility and inflation volatility in this paper. Second, they calibrate their model

and do not provide estimates of consumption volatility risk. It is difficult to know

if the model explains the predictability puzzle by consumption volatility risk that

is reasonably well matched by empirical proxies for consumption uncertainty. In

this paper, I obtain estimates of the model-implied inflation volatility that can be

checked with inflation forecast uncertainty from survey data. The reasonably high

correlation between two measures of inflation uncertainty supports the importance

of inflation volatility.

4.2.4 Robustness

The central role of inflation volatility in the time-variation of the term premium

is not driven by the fact that I use a particular measure of term premium based

on model estimates. To illustrate this point, I regress two estimates of the term

premium constructed by Wright (2011) on the estimates of volatilities in the model.

Since these term premium estimates are not used in estimation, they can be used

to check the robustness of the relation between inflation volatility and the term

premium.28 The first measure (statistical term premium) is constructed based on the

estimation of a no-arbitrage three factor affine term structure model, with monthly

data from January 1990 to December 2007. In this case, the first three principal
28I also estimated the model using ten-year bond yield data. Estimates of parameters and volatili-

ties are not much different. Details of estimation results are available on the web technical appendix.

I am thankful for an anonymous referee who suggested this exercise.
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components of the yield curve are used as risk factors explaining the yield curve

movement and the five-to-ten-year forward term premium is computed. The second

measure (survey-based term premium) is obtained by estimating expected future

short rates from the regression of the short rate onto survey data on inflation and

real GDP growth. Table 7 reports regression results of the two measures of the

forward term premium on the estimates of volatilities. R2 statistics show that

inflation volatility explains the term premium better than consumption volatility

and the three statistical yield curve factors.29 The relationship between estimated

inflation volatility and the term premium in Figure 6 indicates that the rise and fall

of the term premium is consistent with changes in inflation volatility. These results

imply that risk compensation for inflation volatility is a key economic determinant

of the term premium implied in the long-term bond yield.

In general, posterior estimates of parameters and volatilities are influenced by

all the features of the model, not just by the presence of time-varying volatility.

So it might be the case that if I suppress the time-variation of inflation volatility,

consumption volatility from such a restricted model could explain the time variation

of term premia and fit macro and term structure data equally well as the model that

allows the time-varying inflation volatility. Furthermore, even a simpler model with

constant volatility may fit the data well. To check this possibility, I estimate the

two simpler models. The first one allows stochastic volatility only for consumption

growth and assumes that inflation does not affect consumption growth while it

can be affected by consumption growth much like Bansal and Shaliastovich (2010).

The second one assumes constant volatility, as in Piazzesi and Schneider (2006),

but allows real impacts of expected inflation on expected consumption growth. To

compare the fit of different models, I use marginal data density, which is defined by,

mdd(Mi) =
∫
p(ZT |ϑ,Mi)p(ϑ|Mi)dϑ. (16)

29There might be a concern that this result may be spurious due to the relatively poor correlation

of consumption volatility with survey data. However, Wright (2011) shows that inflation uncertainty

matters more than consumption uncertainty even if both measures from survey data are used in

term premium regressions.
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Once marginal likelihood is obtained, I can calculate the posterior probability

of S different models by,

p(Mi|ZT ) =
mdd(Mi)∑S
j=1mdd(Mj)

. (17)

The baseline model of the paper has a much higher marginal data density than

simpler models as shown in Table 8. This finding suggests the importance of

allowing time-varying inflation volatility to fit macro and term structure data jointly.

5 Conclusion

In this paper, I estimate an equilibrium term structure model in which agents have

recursive preferences and persistent fluctuations in expected consumption growth,

expected inflation, and their volatilities drive the time variation of bond yields.

Parameter estimates suggest that agents dislike volatility risks and demand a size-

able compensation for taking these risks. Unlike the calibration exercises common

to the existing literature on long-run risks models, this paper takes the long-run

risks model seriously to the time series data of macro variables and nominal bond

yields using full information likelihood-based methods. By linking the estimates of

volatilities with term premium measures, I find that risk compensation for inflation

volatility is central in explaining the time variation of term premia. This finding is

consistent with empirical evidence from statistical models and survey data. How-

ever, it is different from the emphasis on consumption volatility risk in the existing

long-run risks literature based on model calibration.

This paper does not provide an answer to the sources of fluctuations in inflation

volatility. While changes in monetary policy can be a potential source, investigating

this issue requires endogenizing the inflation process. In addition, a more general

specification of shock processes might be necessary to capture the time-varying

relationship between consumption risk and inflation risk. This work is left for future

research.
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6 Appendix

The Survey of Professional Forecasters, published by the Federal Reserve Bank of

Philadelphia, contains probability ranges for annual real GDP growth and inflation

assessed by each individual forecaster. Separate information for real and nominal

GDP is available from 1981:Q3 onwards. Using the midpoints of the intervals for

probability assessment, I can compute moments associated with each individual

forecaster’s probability assessment. Let Ωj
i,t be the forecast uncertainty for the ith

forecaster at time t for the jth variable. Averaging Ωj
i,t across forecasters, I obtain

the following measure for the average forecast uncertainty.

Ωj
t =

∑Nt
i=1 Ωj

i,t

Nt
(18)

For real GDP growth, I eliminate one individual forecaster who puts more than

90% probability for the interval to which no one else puts more than 5% probability

because this forecaster is a clear outlier.
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Table 1: Prior Distribution

Parameters Domain Density Para(1) Para(2)

ρ11 [0,1) Beta 0.92 0.05

ρ12 R Normal 0 0.1

ρ21 R Normal 0 0.1

ρ22 [0,1) Beta 0.92 0.05

φ11 R+ Gamma 0.3 0.05

φ12 R Normal 0 0.05

φ21 R Normal 0 0.05

φ22 R+ Gamma 1.26 0.15

σ1 R+ Inverse Gamma 0.004 4

σ2 R+ Inverse Gamma 0.005 4

ν1 [0,1) Beta 0.8 0.1

ν2 [0,1) Beta 0.8 0.1

σw,11 R+ Gamma 8×10−6 4

σw,12 R+ Gamma 2×10−6 4

σw,21 R+ Gamma 8×10−6 4

σw,22 R+ Gamma 2×10−6 4

α [0,1) Uniform 0.0001 0.9999

µ1 R Normal 0.008 0.0005

µ2 R Normal 0.009 0.0005

δ [0,1) Beta 0.997 0.002

ψ R+ Gamma 1.5 0.5

γ R+ Gamma 7 5

σu,i R+ Inverse Gamma 8×10−4 4

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝

σ−ν−1e−νs
2/2σ2

, a and b for the Uniform distribution from a to b.
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Table 2: Posterior Distribution

Parameter Prior Posterior: Joint Posterior: Macro

90% Interval Mean 90% Interval Mean 90% Interval

ρ11 [0.850, 0.994] 0.967 [0.956, 0.977] 0.858 [0.780, 0.948]

ρ12 [-0.167, 0.162] -0.020 [-0.025, -0.016] -0.029 [-0.069, 0.011]

ρ21 [-0.163, 0.166] -0.064 [-0.075, -0.050] 0.075 [-0.045, 0.197]

ρ22 [ 0.848, 0.992] 0.947 [0.939, 0.956] 0.930 [ 0.881, 0.979]

φ11 [ 0.219, 0.382] 0.229 [0.211, 0.252] 0.296 [ 0.222, 0.367]

φ12 [-0.082, 0.083] -0.015 [-0.034, 0.007] -0.051 [-0.114, 0.017]

φ21 [-0.083, 0.082] -0.058 [-0.086, -0.031] -0.026 [-0.097, 0.045]

φ22 [ 1.015, 1.506] 0.718 [0.667, 0.778] 0.850 [ 0.707, 1.002]

σ1 [ 0.0021, 0.0079] 0.0058 [0.0049, 0.0068] 0.0039 [0.0034, 0.0044]

σ2 [ 0.0026, 0.0099] 0.0029 [0.0026, 0.0034] 0.0026 [0.0023, 0.0029]

ν1 [ 0.647, 0.958] 0.977 [0.965, 0.987] 0.823 [0.677, 0.949]

ν2 [ 0.650, 0.959] 0.960 [0.952, 0.969] 0.680 [0.519, 0.873]

σw,11 [4.26, 15.77] ×10−6 12.09 ×10−6 [9.46, 14.15] ×10−6 5.16 ×10−6 [3.44, 6.83] ×10−6

σw,12 [1.06, 3.96] ×10−6 3.48 ×10−6 [3.03, 3.85] ×10−6 2.25 ×10−6 [1.09, 3.46] ×10−6

σw,21 [4.25, 15.88] ×10−6 8.30 ×10−6 [7.01, 9.88] ×10−6 3.43 ×10−6 [2.37, 4.43] ×10−6

σw,22 [1.05, 3.94] ×10−6 1.56 ×10−6 [1.26, 1.93] ×10−6 1.67 ×10−6 [1.09, 2.27] ×10−6

α [ 0.0934, 0.9921] 0.0224 [0.0001, 0.0477] 0.653 [0.276, 0.999]

µ1 [ 0.0072, 0.0088] 0.0074 [0.0071, 0.0076] 0.0081 [0.0074, 0.0089]

µ2 [ 0.0082, 0.0098] 0.0091 [0.0088, 0.0093] 0.0089 [0.0080, 0.0097]

δ [ 0.9942, 0.9998] 0.9982 [0.9974, 0.9991]

ψ [ 0.6985, 2.2721] 1.053 [1.021, 1.079]

γ [ 0.2354, 13.7730] 9.518 [8.234, 11.778]

σu,1 [ 0.00043, 0.00160] 0.0011 [0.00098, 0.00119]

σu,4 [ 0.00043, 0.00160] 0.00038 [0.00034, 0.00042]

σu,8 [ 0.00043, 0.00159] 0.00023 [0.00021, 0.00026]

σu,12 [ 0.00042, 0.00158] 0.00021 [0.00019, 0.00023]

σu,16 [ 0.00042, 0.00158] 0.00023 [0.00021, 0.00025]

σu,20 [ 0.00042, 0.00159] 0.00024 [0.00021, 0.00027]

Notes: Macro stands for the estimation results using only macro data and Joint for the

estimation results including term structure data. Posterior distribution is based on 50,000

(80,000) posterior draws after discarding the initial 10,000 (20,000) draws in the joint(macro)

estimation.
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Table 3: Macro Implications

Moment Data Macro Joint

estimate standard error mean 90% interval mean 90% interval

E(gc,t) 3.23 0.2 3.23 [3.14, 3,33] 2.91 [2.71, 3.12]

σ(gc,t) 1.84 0.16 1.73 [1.60, 1.85] 2.28 [2.12, 2.42]

AR1(gc,t) 0.34 0.062 0.15 [0.09, 0.21] 0.23 [0.18, 0.28]

AR4(gc,t) 0.07 0.057 0.10 [0.06, 0.14] 0.19 [0.14, 0.24]

E(πt) 3.71 0.48 3.73 [3,67, 3.77] 3.88 [3.73, 4.04]

σ(πt) 2.52 0.36 2.43 [2.36, 2.51] 3.08 [2.94, 3.22]

AR1(πt) 0.84 0.048 0.81 [0.78, 0.84] 0.72 [0.70, 0.75]

AR4(πt) 0.71 0.084 0.71 [0.68, 0.74] 0.62 [0.59, 0.65]

Corr(gc,t, πt) -0.34 0.150 -0.18 [-0.10, -0.26] 0.08 [0.03, 0.15]

Notes: Macro stands for the estimation results using only macro data and Joint for

the estimation results including term structure data in the estimation. Means and

standard deviations of consumption growth and inflation are expressed in terms of

annualized percentage. I compute posterior moments using 50,000 posterior draws.

Standard errors are Newey and West (1987) corrected using 10 lags.
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Table 4: Regressions of Consumption Growth and Inflation on the Es-

timates of the Model-implied Expectations

Regressors SPF Con. SPF Inf. Realized Con. Realized Inf.

constant 2.484 3.393 3.075 4.006

[2.288, 2.679] [3.264, 3.522] [2.839, 3.311] [3.839, 4.173]

expected con. 0.192 0.184 0.475 -0.796

[0.011, 0.373] [0.065, 0.304] [0.242, 0.708] [-0.961, -0.632]

expected inf. -0.041 0.510 -0.259 0.843

[-0.148, 0.066] [0.440, 0.581] [-0.346, -0.172] [0.781, 0.904]

R2 0.045/0.240 0.796/0.601 0.163/0.369 0.776/0.865

(0.366/0.284 ) (0.782/0.776 )

Notes: SPF Con. and SPF Inf. denote one-quarter ahead median forecasts of consumption

growth and inflation from the Survey of Professional Forecasters from 1981:Q3 to 2006:Q4.

Realized consumption growth and inflation from 1953:Q1 to 2006:Q4 are also regressed

on the model implied expectations computed at the posterior means of parameters and

volatilities. Entries in square brackets are the 95 percent confidence intervals for coefficients.

Numbers in the parentheses denote R2s in regressions using data from 1981:Q3 to 2001:Q4.

Italicized numbers are from the corresponding regressions using estimates obtained by only

macro data.
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Table 5: Regressions of Forecast Uncertainty and Dispersion of Fore-

casts on the Estimates of Time-varying Volatility

Regressors Uncertainty Real GDP Uncertainty Inf. Dispersion Con. Dispersion Inf.

constant 1.096 [0.939, 1.252] 0.246 [0.116, 0.377] 0.615 [0.364, 0.866] -0.258 [-0.532, 0.016]

consumption vol. 0.024 [-0.067, 0.116] 0.120 [-0.026, 0.266]

inflation vol. 0.471 [0.389, 0.553] 0.656 [0.484, 0.829]

R2 0.003/0.347 0.565/0.061 0.026/0.264 0.364/0.248

(0.264/0.295 ) (0.531/0.269 ) (0.414/0.224 ) (0.498/0.324 )

Notes: Forecast uncertainty is constructed from probability forecasts in the SPF from

1981:Q3 to 2006:Q4. Dispersion of one quarter ahead forecasts of CPI inflation and con-

sumption growth are also obtained from the Survey of Professional Forecasters. Numbers

in parentheses denote R2 in regressions using data from 1981:Q3 to 2001:Q4. Italicized

numbers are from the corresponding regressions using estimates obtained by only macro

data.
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Table 6: Posterior Mean of Yield Curve Moments

E(y1,t) E(y4,t) E(y8,t) E(y12,t) E(y16,t) E(y20,t)

data 5.188 5.596 5.797 5.964 6.090 6.169

model 5.308 5.565 5.804 5.965 6.080 6.174

σ(y1,t) σ(y4,t) σ(y8,t) σ(y12,t) σ(y16,t) σ(y20,t)

data 2.882 2.885 2.846 2.773 2.743 2.699

model 2.899 2.868 2.832 2.792 2.744 2.686

AR1(y1,t) AR1(y4,t) AR1(y8,t) AR1(y12,t) AR1(y16,t) AR1(y20,t)

data 0.94 0.95 0.95 0.96 0.97 0.97

model 0.94 0.95 0.96 0.96 0.97 0.97

400E(|u1,t||Y T ) 400E(|u4,t||Y T ) 400E(|u8,t||Y T ) 400E(|u12,t||Y T ) 400E(|u16,t||Y T ) 400E(|u20,t||Y T )

0.328 0.099 0.053 0.043 0.050 0.061

Notes: All the estimates are in annualized percentage terms. Posterior moments

are computed based on every 25th draw among 50,000 posterior draws.
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Table 7: Regressions of Term Premium on Various Factors

Regressors

Panel A : Statistical Term Premium

constant 2.976 2.873 2.959 2.989 -4.0111

[2.590, 3.361] [2.679, 3.067] [2.665, 3.253] [2.004, 3.974] [-5.097, -2.924]

level 0.046

[-0.045, 0.137]

slope 1.649

[1.339, 1.958]

curvature -6.807

[-10.440, -3.174]

con. vol. -0.075

[-0.64, 0.489]

inf. vol. 5.139

[4.337, 5.941]

R2 0.015 0.632 0.175 0.001 0.713

Panel B : Term Premium from Survey Data

constant 1.923 1.617 1.678 2.533 -2.097

[1.638, 2.208] [1.340, 1.893] [1.399, 1.957] [1.727, 3.339] [-3.354, -0.840]

level 0.126

[0.058, 0.193]

slope 0.303

[-0.137, 0.743]

curvature -2.734

[-5.949, 0.481]

con. vol -0.554

[-1.019, -0.089]

inf. vol. 2.784

[1.855, 3.714]

R2 0.317 0.060 0.088 0.160 0.546

Notes: The level, slope, and curvature are the first, second, and third principal components of

the yield curve. The last two regressors are the posterior mean values of the estimated stochastic

volatilities of consumption growth and inflation. Term premium is a 5 to 10-year forward premium

computed by Wright (2011) in two different ways. Entries in square brackets are the 95 percent

confidence intervals for coefficients.
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Table 8: Log Marginal Data Densities

Model Log Marginal Data Density

M1 (benchmark model) 9,679.8

M2 (homoskedastic volatility process) 9,642.2

M3 (homoskedastic volatility process, no real impacts of expected inflation) 9,456.3

M4 (constant volatility) 9,278.1

Notes I compute marginal data densities based on the simulation methods in Chib and

Jeliazkov (2001).
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Figure 1: Consumption Growth, Inflation, and Bond Yields
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Figure 2: Posterior Distribution of Market Price of Risk
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Figure 3: Estimates of Expected Consumption Growth and Inflation
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I run Kalman smoothing at the mean of parameters and stochastic volatilities

based on 50,000 posterior draws in order to compute model-implied expectations.

Survey-based expectations are one quarter ahead median forecasts of CPI inflation

and consumption growth from the SPF. The sample period is from 1981:Q3 to

2006:Q4.
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Figure 4: Estimates of Time-Varying Volatility
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The posterior means of stochastic volatilities from 50,000 posterior draws are plot-

ted. Dispersion of one quarter ahead forecasts of CPI inflation and consumption

growth are obtained from the SPF. Forecast uncertainty is constructed from

probability forecasts in the SPF. The sample period is from 1981:Q3 to 2006:Q4.
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Figure 5: Model-implied Term Premium for the Ten-year Bond Yield
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The term premium is computed by yn,t −
Et(

∑n−1
j=0 it+j)

n . Model estimates use pos-

terior means of parameters and stochastic volatilities. The counterfactual exercise

keeps inflation volatility constant at the time-series average of posterior mean

estimates.
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Figure 6: Inflation Volatility and Term Premium
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Term premium (five-to-ten-year forward premium) measures are from Wright (2011)

. The statistical measure of the term premium is obtained by estimating a three

factor no-arbitrage model using data from 1990:Q1 to 2006:Q4. The survey-based

measure of the term premium uses expected short rates from survey data to

compute the term premium from the second half of 1990 to the second half of 2006.


