Business Fixed Investment in the 1980s: Prospective Needs and Policy Alternatives

By David W. Berson and V. Vance Roley

Recent public discussion of supply-side economics has once again highlighted the role business fixed investment plays in the economy. Along with the stimulating effects of lower marginal tax rates on labor supply and personal saving emphasized by proponents of the supply-side view, an increase in business expenditures on equipment and structures is seen to provide the impetus to achieve the long-run economic goals of lower inflation and higher labor productivity growth. Apart from the controversy surrounding certain elements of the "new" supply-side economics, most economists apparently believe that increased capital formation can help reduce inflation and spur productivity growth. Indeed, some economists claim that a significant part of the poor performance of labor productivity since the mid-1970s is directly due to a slowdown in capital formation. ¹

A number of analysts have argued, however, that substantial future investment will be required to reverse the slowdown in capital formation. For example, the Council of Economic Advisers under both Republican and Democratic presidents has projected that real business fixed investment must expand to over 11 per cent of real GNP to achieve adequate growth of the capital stock.² Investment spending of this magnitude is very high by historical standards. For this reason many analysts have suggested that business tax cuts are needed to encourage greater investment.

In this article, the prospective performance of business fixed investment in the 1980s is

investigated. The first section analyzes the investment requirements of the 1980s. Next, empirical models of business fixed investment are used to judge whether there is likely to be a shortfall of investment from the amount required. In the third section, given at least the possibility of an investment shortfall, alternative business tax cuts are evaluated to determine which type is most effective in stimulating capital formation. The alternative tax cuts are then evaluated with respect to the additional investment they will obtain. The final section summarizes the main conclusions of this article.

INVESTMENT REQUIREMENTS IN THE 1980S

This section discusses the appropriate criteria for determining investment requirements and then analyzes what these requirements are likely to be in the coming decade. In assessing the amount of business fixed investment needed in the 1980s, it is generally believed that the major criterion should be to increase the growth rate of the nation’s capital stock. For a given amount of labor, greater capital accumulation would accelerate the amount of output that may be potentially produced. Similarly, with a growing labor force, the growth rate of the capital stock must exceed employment growth to allow capital deepening—a rise in the amount of capital per unit of labor. By providing more capital to each worker, capital deepening would be expected to increase the amount of potential output per unit of labor. An increase in the growth of the capital stock may also accelerate the amount of technical progress by embodying technical advances in new capital. Such gains in technical progress would further increase potential output growth. A more rapid expansion of the capital stock would, through both of these channels, increase the rate at which output is produced per unit of labor. In turn, this rise in labor productivity growth would be expected to lower inflation by retarding the growth of unit labor costs which depend on the gap between the growth rates of nominal wages and labor productivity. Thus, an increase in the growth rate of the capital stock would increase the economic growth rate, stimulate greater productivity gains, and help reduce inflation.

This article assumes that an increase in the growth rate of the capital stock is desirable and adopts as a standard the rate of increase recorded from 1948 through 1969, a period of significantly higher capital stock and real output growth and significantly lower inflation than in recent years. As shown in Table 1, the capital stock grew at a rate of 4.5 per cent during the 1948-69 period. The table also shows the recent slowdown of capital formation, particularly during the late 1970s. Between 1975 and 1979, for example, the real net capital stock grew at a 2.7 per cent rate, more than a percentage point below that of the previous five-year period and about 1.75 percentage points below the rate recorded during the 1948-69 period. Even more striking is the slowdown in the growth of the capital-labor ratio. Following the steady gains in the level of the capital-labor ratio from the beginning of the postwar period through the mid-1970s, this measure failed to increase during the late 1970s.

The lower part of Table 1 estimates the amount of real business fixed investment as a percentage of real GNP needed in the 1980s. The amount of gross investment needed each year equals the increase in the capital stock consistent with the desired 4.5 per cent growth rate plus the expenditures needed to replace

3 The recent benchmark revision of the national income and product accounts, NIPA, will alter capital stock series that are consistent with these accounts. The tables and empirical work in this article are based on data available prior to this revision. Virtually all of the revisions are after
stock—computed using NIPA data—may be seen in the following OLS regression using annual data from 1967 through 1979:

\[
\%\Delta K^R = 0.0122 + 0.9595 \%\Delta K^0, \\
(2.6) \quad (8.1) \\
R^2 = .84 \quad SE = .005 \quad DW = 1.63
\]

where \(\%\Delta K \) = growth of the real net stock of nonresidential structures

\(R^2 \) = adjusted multiple correlation coefficient

SE = standard error

DW = Durbin-Watson statistic

with the superscripts \(R \) and \(0 \) corresponding to the revised and old data series, respectively, and t-statistics in parentheses. This equation implies that 5 per cent capital stock growth using the old data is revised to approximately 6 per cent. Calculations using the revised data show a half percentage point slowdown of capital stock growth when comparing the 1970-79 period with 1948-69, and about a 1 percentage point drop when comparing 1975-79 with 1948-69.

The revisions in the NIPA data also change the investment-GNP shares reported in Table 1. Using the revised data, the average share for the 1975-79 period is 10.3 per cent. The differences between the old and revised investment-GNP ratios may be seen in the following OLS regression using annual data over the 1967-79 sample period:

\[
(I/Q)^R = 0.0112 + 0.9202 (I/Q)^0, \\
(0.9) \quad (7.1)
\]

where \(I/Q \) = ratio of real gross investment in private nonresidential structures and producers' durable equipment to real gross national product.

This equation indicates that a 10 per cent ratio using the old data corresponds approximately to a 10.3 per cent ratio using the revised data. Thus, forecasts of business fixed investment using the revised data would probably be higher than those reported in this article. However, to achieve past rates of net capital accumulation, investment must surpass the amounts calculated with the old data because of the larger amount of economic depreciation implied by the larger capital stock. The possible investment shortfall reported below in the text should, therefore, change only slightly using the revised data because both investment requirements and investment forecasts would be higher.

<table>
<thead>
<tr>
<th>Year</th>
<th>Capital Stock Growth</th>
<th>Labor Ratio Growth</th>
<th>Investment-GNP Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948-69</td>
<td>4.5</td>
<td>2.3</td>
<td>9.0</td>
</tr>
<tr>
<td>1970-79</td>
<td>3.3</td>
<td>0.8</td>
<td>10.0</td>
</tr>
<tr>
<td>1975-79</td>
<td>3.8</td>
<td>1.7</td>
<td>10.3</td>
</tr>
<tr>
<td>1980-89</td>
<td>2.7</td>
<td>0.0</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Notes:
- Capital stock = real net stock of nonresidential structures and producers' durable equipment (U.S. Department of Commerce, Bureau of Economic Analysis).
- Investment = real gross investment in private nonresidential structures and producers' durable equipment (U.S. Department of Commerce, Bureau of Economic Analysis).
- GNP = real gross national product (U.S. Department of Commerce, Bureau of Economic Analysis).

Values for employment growth and GNP over the 1980-89 period are taken from the TRENDDLONG0880 simulation of Data Resources, Inc.
depreciated capital. To represent investment as a share of real GNP, a baseline macro-model forecast is used to obtain values for real GNP during the 1980s. Assumptions about the growth of employment during the 1980s are also given to determine a path for the capital-labor ratio consistent with the growth of the capital stock. The results of this experiment indicate that real business fixed investment must average 10.7 per cent of real GNP during 1980-84 and 11.4 per cent during 1985-89. These are historically high ratios. For example, during the 1975-79 period, the investment-GNP ratio was only 9.8 per cent.

The analysis also implies strong growth of the capital-labor ratio during the 1980s. In fact, the magnitude of the increases reported in Table 1 suggests that somewhat lower capital stock growth may be sufficient to attain labor productivity growth comparable with previous periods. Nevertheless, as a whole, the evidence in Table 1 suggests that historically high levels of business fixed investment are desired throughout the 1980s.

In addition to the amount of investment spending needed to attain past rates of capital formation, the 1980s are likely to have extraordinary investment requirements, requirements related to types of investment that do not add directly to measured output or that result from special circumstances unique to the 1980s. Extraordinary investment requirements in the 1980s are projected to fall into two general areas. First, businesses will be required under the Clean Air and Water Acts to devote some capital spending on pollution abatement. From 1970 through 1977, these investment expenditures averaged about 0.4 per cent of real GNP, with expenditures in 1977 perhaps approaching 0.6 per cent. To meet existing environmental regulations alone, this share may continue to average between 0.3 and 0.6 per cent of real GNP. Any additional environmental regulations would, of course, push this share higher.

Second, because of the recent need to accelerate the development of domestic energy supplies, large amounts of energy-related investment will be required. Major increases in capital spending are needed in the oil industry—for exploration, development, production, and refining capacity—as well as in the coal and synfuel industries. These investment expenditures may total 1 per cent of real GNP. In addition to these direct energy needs, increased investment spending may be required due to indirect energy factors. In particular, higher energy prices resulting from previous oil supply shocks may have accelerated the obsolescence of the capital stock. Such investment requirements are very difficult to quantify, but they could parallel the amounts of additional investment required for pollution abatement.

Together, the extraordinary investment requirements associated with pollution abatement and energy may range from 1.5 to 2.0 per cent of real GNP. It may not, however, be appropriate to simply add this amount of specialized investment to the amount needed to stimulate capital stock growth. This procedure

4 Underlying these calculations is the assumption that 9 per cent of the real net capital stock depreciates each year. Lower rates of economic depreciation would imply lower shares of gross business fixed investment. The assumption of 9 per cent economic depreciation conforms to the experience of the late 1970s. Also, as indicated on the bottom of Table 1, GNP and employment growth forecasts over the 1980-89 period are from Data Resources, Inc.

5 See, for example, the estimates of past and future business capital expenditures on pollution abatement in U.S. Environmental Protection Agency, The Cost of Clean Air and Water, Report to Congress, August 1979.

6 This estimate is derived from the requirement of higher investment levels found in Economic Report of the President, 1980. The figures reported there are further adjusted to take "normal" or trend levels of investment into account to derive the estimate reported above.
would imply that historical periods were not subject to any unique investment requirements of their own. The total business fixed investment needs of the 1980s, however, do appear to surpass those of previous periods, and as a percentage of real GNP they are most likely higher than 11 per cent.

FORECASTS OF BUSINESS FIXED INVESTMENT

To determine whether there is likely to be a shortfall of investment from the amount required, four different models of investment behavior are used to forecast future investment expenditures.\(^7\) A variety of different investment models are often used for this purpose because there is no consensus about which model best represents actual investment behavior. Accordingly, the four alternatives emphasize somewhat different determinants of investment spending.

The four models used in this study, listed in Table 2, are the cash flow with accelerator, neoclassical, neoclassical with cash flow and pollution abatement adjustment, and the neoclassical with cash flow.\(^8\) All the models in Table 2 include real business output, \(Y\), as a determinant of real business fixed investment, \(I\). In the cash flow with accelerator model, for example, current and past changes in real business output are one of two determinants of net investment.\(^9\) This distributed lag on changes in business output represents expectations about future output. If output has increased steadily for several quarters, for example, businesses may expect future output to rise. They will then need additional plant and equipment to meet the increased demand for goods. The distributed lag also represents the time lag between the planning and completion of business investment projects. In particular, past increases in output may have caused businesses to initiate investment projects, but adjustment costs and production lags may have delayed actual expenditures. Through these channels, past changes in and levels of business output play a central role in all of the models considered here.

Another determinant of gross business fixed investment appearing in all of the models is the previous period's capital stock, \(K_{t-1}\). This variable together with its multiplicative coefficient is included to represent the amount of investment devoted to replacing depreciated capital: replacement investment is added to net investment to form gross investment. This expression may also reflect the adjustment in moving from the actual to the desired capital stock. The last two models include the product of the capital stock and capacity utilization in an effort to measure the amount of depreciated

\(^8\) See the references in note 7 for detailed discussions of the first two investment models. The last two models are based on the investment equations in the Data Resources, Inc., U.S. Macro Model. In addition to the four models listed in Table 2, the generalized accelerator model was also used to forecast business fixed investment. The forecast results from this model closely correspond to those of the neoclassical model with cash flow and pollution abatement adjustment. The generalized accelerator model is not discussed further in this article because it implies, a priori, that business tax cuts will have no direct effect on investment spending. Instead, only tax policy changes that initially stimulate business output will increase investment spending.

\(^9\) Net investment represents the amount of gross investment spending minus the amount needed to replace depreciated capital. As is discussed below, net investment may be represented as \(I_t - d\cdot K_{t-1}\).
Table 2
BUSINESS FIXED INVESTMENT MODELS

Cash Flow with Accelerator Term (CFA)

\[I_t = a + \sum_{s=0}^{19} b_s \cdot \Delta Y_{t-s} + \sum_{s=0}^{19} c_s \cdot \Delta CF_{t-s-1} + d \cdot K_{t-1} + u_t \]

Neoclassical (N)

\[I_t = a + \sum_{s=0}^{17} b_s \cdot \Delta(\text{Y} \cdot \text{CV})_{t-s} + d \cdot K_{t-1} + u_t \]

Neoclassical with Cash Flow and Pollution Abatement Adjustment (NCFPA)

\[I_t = a + \sum_{s=0}^{17} b_s \cdot \Delta(\text{Y} \cdot \text{CV})_{t-s} + \sum_{s=0}^{6} c_s \cdot \Delta S_{t-s-1} + d \cdot K_{t-1} + e \cdot CU_t \cdot K_{t-1} + f \cdot (\text{YE}_t - \text{YA}_t) + u_t \]

Neoclassical with Cash Flow (NCF)

\[I_t = a + \sum_{s=0}^{5} b_s \cdot \Delta(\text{Y} \cdot \text{CV})_{t-s} + \sum_{s=0}^{6} c_s \cdot \Delta S_{t-s-1} + e \cdot CU_t \cdot K_{t-1} + u_t \]

Notes:
CF = real cash flow of nonfinancial corporations
CU = capacity utilization
CV = inverse of the real rental price of capital services
DS = ratio of interest payments on debt of nonfinancial corporations to cash flow
I = real investment expenditures
K = real net stock of capital of the private business sector
Y = real gross domestic product of total business
YA = real output adjusted for pollution abatement expenditures
YE = expected real output
u_t = stochastic error term such that \(u_t = \rho \cdot u_{t-1} + \epsilon_t \), where \(E(\epsilon_t, \epsilon_s) = 0 \), \(t \neq s \)
\(\sigma_{\epsilon}^2, t = s \)

Data for YA and YE are computed by Data Resources, Inc.

capital due to actual use in the production process.

Neither business output nor last period's capital stock is directly responsive to changes in business taxes—that is, changes in the corporate income tax rate, the investment tax credit, and depreciation allowances. In contrast, both the cash flow variable, CF, and the rental price of capital services variable, 1/CV, which appear in the last three investment models, are affected by changes in any of the business tax parameters. Cash flow variables are included in investment models as proxies for expected future profitability of businesses. The other investment
determinant responsive to business tax changes—the rental price of capital services—is the cost of using one unit of capital goods for one year.11 This cost can be interpreted either as the direct cost of actually renting capital goods, or as an implicit cost associated with a firm renting capital services to itself. In either case, the higher the rental price relative to the price of output, the lower the amount of desired capital, and vice versa. The three models including the rental price of capital services are all labeled as neoclassical. Two of these neoclassical models are influenced by corporate cash flow, and one of these two contains additional adjustments due to the significant amount of expenditures on pollution abatement since the late 1960s.

Separate equations are estimated for producers' durable equipment and nonresidential structures for each of the four models of investment behavior. Total business fixed investment is disaggregated to take account of the different effects of tax changes on these two categories of investment. Seasonally adjusted quarterly data are used in the estimations, with the sample period beginning in 1960:I and ending in 1978:IV. The estimation results are summarized in the Appendix.12

The estimated equations reported in the Appendix are used to forecast business fixed investment expenditures through 1989. Values for the lagged capital stock appearing in all of the equations are generated each period from investment spending forecasted in previous periods. Future values of the other variables on the right-hand side of the equations in Table 2 are taken from a baseline forecast of the U.S. Macro Model constructed by Data Resources, Inc. These baseline values are consistent with a smoothly growing economy where real GNP growth averages 2.5 per cent in the 1980-84 period and 3.5 per cent in 1985-89.13 This macro-model forecast also contains its own forecast of real business fixed investment, and to the extent that the forecasts from the individual investment models differ from the baseline forecast, the difference is assumed to represent changes in the mix, not the amount, of real GNP.14

The forecasts of business fixed investment from the four investment models are illustrated in Chart 1, beginning in 1979 and ending in 1989. Actual data for business fixed investment are also plotted to illustrate the investment performance of the late 1970s and to allow a comparison of predicted and actual values during the 1979-80 period. The forecasts from the four models yield a range of outcomes. In 1981, for example, the neoclassical model predicts that real business fixed investment will comprise 10.2 per cent of real GNP, while the

10 Cash flow is defined in this article as

\[
\text{profits before tax} - \text{profits tax accruals} + \text{capital consumption allowances} + \text{capital consumption adjustment} + \text{inventory valuation adjustment},
\]

all of which correspond to nonfinancial corporations.

12 The initial lag lengths used in the estimation procedure were those used by Clark, "Investment in the 1970s." However, in contrast to Clark's study, the investment equations are not deflated by potential GNP as a heteroskedasticity correction. Tests for heteroskedasticity indicated that such corrections were not needed. See Stephen M. Goldfeld and Richard E. Quandt, "Some Tests for Homoskedasticity," Journal of the American Statistical Association, Vol. 60, June 1965, pp. 539-47.

13 The baseline forecast using the DRI model was also adjusted to exclude any assumed future policy changes.

cash flow with accelerator model forecasts a 9.2 per cent share. In addition, according to the neoclassical model, the investment-GNP ratio will grow steadily to 11.6 per cent in 1989, while the cash flow with accelerator model predicts a 10.1 per cent share from 1987 through 1989. In the most favorable scenario—that using the neoclassical model—the investment-GNP ratio does not reach 11 per cent until 1986, and for the entire 10-year period investment is predicted to average 10.9 per cent of real GNP. The forecasts from the other two models fall between those of the neoclassical and cash flow with accelerator models.

Accepting the ranges of these forecasts as plausible investment outcomes, the evidence suggests that real business fixed investment may average between 9.7 and 10.9 per cent of real GNP during the 1980s. The upper end of this range may be close to being consistent with the investment needs of the 1980s discussed previously, but the lower end almost certainly is not. Because an investment shortfall is thus possible, the next section considers business tax cuts in terms of their relative effectiveness in stimulating investment spending.

Chart 1
FORECASTS OF REAL BUSINESS FIXED INVESTMENT
AS A PERCENTAGE OF REAL GNP

Per Cent

12.0
11.5
11.0
10.5
10.0
9.5
9.0

Historical
Neoclassical
Cash Flow with Accelerator
Neoclassical with Cash Flow and Pollution Abatement
Neoclassical with Cash Flow
A COMPARISON OF BUSINESS TAX CUTS

Different types of business tax cuts are empirically examined in this section using the models of business fixed investment listed in Table 2. The analysis of business tax cuts in the context of the four models focuses on the amount of additional investment spending for each dollar reduction in Treasury tax revenue. This concept measures the efficiency of the tax cut in terms of increases in the Federal deficit. In particular, the larger the amount of additional investment spending per dollar of Treasury revenue loss, the smaller the increase in the Federal deficit needed to attain a targeted amount of additional investment spending. Other criteria may be used to judge business tax cuts—such as simplifying tax law or increasing economic efficiency—but these factors do not have direct implications for the amount of additional investment spending and the size of the Federal deficit. Nevertheless, an "optimal" tax package would perform well under all possible criteria.

Three general types of tax cuts are examined here—corporate rate cuts, increases in the investment tax credit, and accelerated depreciation. The corporate tax rate cut considered in this article reduces the maximum statutory corporate income tax rate from 46 to 40 per cent. As is the case with the other tax cuts considered, this rate reduction changes both corporate cash flow—by reducing tax liabilities—and the rental price of capital.

The second policy considered would increase the investment tax credit from 10 to 20 per cent. This credit is available only for expenditures on producers’ durable equipment. Thus, the amount of spending on nonresidential structures does not change in response to this type of tax cut.15

The final tax cut involves accelerated depreciation. This policy enables businesses to write off depreciation allowances more quickly. Because depreciation allowances are currently based on the historical price of a capital good, the rise in inflation during the 1970s has steadily eroded the real value of depreciation deductions. A shorter depreciation schedule would alleviate part of this problem during periods of high inflation.

Three different accelerated depreciation proposals are considered below—the 10-5-3 proposal, first-year capital recovery, and 40 per cent liberalization of depreciation allowances. The 10-5-3 proposal reduces the tax lives of structures and two types of equipment to 10, 5, and 3 years, respectively.16 In the empirical analysis of this proposal, it is assumed that these changes are phased in over a five-year period. The first-year capital recovery plan would allow businesses to deduct the present, or discounted, value of depreciation allowances during the year of purchase.17 Under this proposal, depreciation allowances would not erode over time due to inflation. The third proposal consists of accelerating depreciation rates by 40 per cent over current law.

The empirical results associated with the implementation of the business tax cut proposals in the first quarter of 1981 are presented in Table 3. In this table the effectiveness of the tax cuts in stimulating investment spending are ranked for each model of investment behavior. The rankings are based

15 Nonresidential structures in the national income accounts do include some property defined as equipment for tax purposes. However, adjustments were not made to allow for this factor in the empirical work.
16 For more details concerning the 10-5-3 proposal, see the Conable-Jones Bill (S. 1435).
17 This tax policy change was recently proposed by Alan J. Auerbach and Dale W. Jorgenson, "The First Year Capital Recovery System," working paper, Harvard University, 1979. In contrast to the empirical analysis of this proposal presented above, Auerbach and Jorgenson assume that this tax change is gradually adopted by businesses.
Table 3
RANKING OF BUSINESS TAX CUTS BY INVESTMENT MODEL

<table>
<thead>
<tr>
<th>Cash Flow with Accelerator</th>
<th>Neoclassical with Cash Flow and Pollution Abatement Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>FYCR</td>
<td>(.29)</td>
</tr>
<tr>
<td>ITC</td>
<td>(.27)</td>
</tr>
<tr>
<td>CRC</td>
<td>(.24)</td>
</tr>
<tr>
<td>LD</td>
<td>(.19)</td>
</tr>
<tr>
<td>10-5-3</td>
<td>(.12)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neoclassical</th>
<th>Neoclassical with Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITC</td>
<td>(1.17)</td>
</tr>
<tr>
<td>10-5-3</td>
<td>(.89)</td>
</tr>
<tr>
<td>LD</td>
<td>(.75)</td>
</tr>
<tr>
<td>CRC</td>
<td>(.50)</td>
</tr>
<tr>
<td>FYCR</td>
<td>(.25)</td>
</tr>
</tbody>
</table>

Notes: CRC = corporate rate cut of six percentage points
ITC = additional investment tax credit of 10 percentage points
10-5-3 = phased-in 10-5-3
FYCR = first-year capital recovery
LD = 40 per cent liberalization of depreciation allowances

Numbers in parentheses are the additional amount of nominal investment per dollar of nominal tax revenue loss.

on the additional amount of nominal investment per dollar of nominal tax revenue loss to the Treasury.¹⁸

¹⁸Two aspects of these results should be noted. First, the Treasury tax revenue loss data used in the computations correspond to static loss. That is, a baseline investment path unresponsive to the tax cuts is used to calculate the amount of Treasury tax revenue loss. The other measure sometimes used—dynamic revenue loss—is based on the changes in tax revenue allowing for economywide feedback from the tax cut. This method, therefore, requires a complete model of the economy. Furthermore, estimates of revenue loss using this method importantly depend on the empirical macroeconomic model used, as well as assumptions about future monetary and fiscal policy.

Second, the increase in investment spending reported in Table 3 also does not include the effects of economywide feedback. Only the initial impact is considered. The feedback effects may imply larger increases in investment due to subsequent increases in business output, or perhaps smaller increases due to inadequate gross saving. However, recent discussions of business investment spending suggest that depressed investment incentives are the primary problem, not the possibility of inadequate saving. Thus, the inclusion of economywide feedback would possibly imply higher figures in Table 3 by increasing the amount of investment and reducing tax revenue loss. On the other hand, some of the effectiveness of the business tax cuts may be reduced through changes in the price of capital goods relative to the price of output. For examples of the dynamic approach of investigating tax cuts, see Lawrence R. Klein and Paul Taubman, “Estimating Effects Within a Complete Econometric Model,” in Gary Fromm, ed., *Tax Incentives and Capital Spending*, Washington, D.C.: The Brookings Institution, 1971, pp. 197-242; and Auerbach and Jorgenson, “The First Year Capital Recovery System.”
The results in Table 3 indicate that an increase in the investment tax credit, ITC, is the most efficient in stimulating investment spending according to three of the models, and the first-year capital recovery plan, FYCR, has the highest ranking in one of the models. In the neoclassical model, for example, a $1 increase in the investment tax credit increases investment spending by an average of $1.17 over the 1981-85 period, and $1.07 during the entire 1981-89 period. In all of the models which include the rental price of capital—the three models based to some extent on the neoclassical approach—the investment tax credit is followed by either the 10-5-3 proposal or the 40 per cent liberalization plan, LD, with the corporate rate cut, CRC, and the first-year plan fourth and fifth in the rankings, respectively. In the cash flow with accelerator model, however, the first-year plan has the highest "bang for the buck," with the investment tax credit second.

As a whole, the results suggest that an increase in the investment tax credit is the most efficient policy to stimulate capital formation. As noted previously, however, the credit is applicable only to expenditures on equipment. An increase in the investment tax credit may therefore be expected to shift the composition of investment spending toward producers’ durable equipment and away from nonresidential structures. Nevertheless, this problem could be eliminated in part by expanding the coverage of the credit to include structures.

WILL A BUSINESS TAX CUT SATISFY THE INVESTMENT NEEDS OF THE 1980S?

In this section, forecasts of the share of real business fixed investment in real GNP resulting from the different tax policy proposals are compared and the actual dollar amounts of the tax cuts are presented. The forecasts of investment-GNP ratios corresponding to the different tax policy proposals are used to determine whether a business tax cut is likely to provide enough investment stimulus to meet the investment needs of the 1980s.

The estimated sizes of the various tax cuts in terms of the static change in nominal tax revenue loss are presented in Table 4. The tax cuts presented in the table are assumed to become effective in the first quarter of 1981. The 1980-84 and 1980-89 averages therefore understate revenue loss by including 1980, which is chosen as the starting point to enable a direct comparison to the investment requirements calculated earlier.

The estimates in Table 4 indicate that the increase in the investment tax credit, the reduction in the corporate income tax rate, and the 40 per cent depreciation liberalization plan produce similar Treasury revenue loss. In addition, for all of these tax cuts the revenue loss is greater in the 1985-89 period than in 1980-84 due in part to the steady increase of nominal business fixed investment in the baseline forecast. The estimates presented for the phased-in 10-5-3 proposal and the first-year capital recovery plan indicate that these tax cuts are significantly more expensive in terms of Treasury revenue loss. The revenue loss associated with the 10-5-3 proposal is relatively small between 1980 and 1984, partly because of its phased-in implementation, but grows to an average of $57.4 billion during 1985-89. The first-year capital recovery plan involves large revenue losses at its inception and grows to an average revenue loss of $66.4 billion over the 1985-89 period.

The shares of real business fixed investment in real GNP resulting from the various tax policy changes are presented in the remaining rows of Table 4. For a 10 percentage point increase in the investment tax credit, for example, the neoclassical model yields an average investment-GNP ratio of 11.5 per cent.
Table 4
REAL BUSINESS FIXED INVESTMENT AS A PERCENTAGE OF REAL GNP: BUSINESS TAX CUT RESULTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFA</td>
<td>$14.9b</td>
<td>$31.1b</td>
<td>$23.0b</td>
</tr>
<tr>
<td>N</td>
<td>9.5%</td>
<td>10.2%</td>
<td>9.9%</td>
</tr>
<tr>
<td>NCFPA</td>
<td>11.0</td>
<td>11.9</td>
<td>11.5</td>
</tr>
<tr>
<td>NCF</td>
<td>10.1</td>
<td>11.1</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>10.4</td>
<td>11.4</td>
<td>10.9</td>
</tr>
</tbody>
</table>

Corporate Rate Cut of Six Percentage Points

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Loss</td>
<td>$10.9b</td>
<td>$25.3b</td>
<td>$18.1b</td>
</tr>
<tr>
<td>CFA</td>
<td>9.5%</td>
<td>10.1%</td>
<td>9.8%</td>
</tr>
<tr>
<td>N</td>
<td>10.6</td>
<td>11.5</td>
<td>11.0</td>
</tr>
<tr>
<td>NCFPA</td>
<td>9.8</td>
<td>10.5</td>
<td>10.1</td>
</tr>
<tr>
<td>NCF</td>
<td>10.1</td>
<td>11.0</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Phased-In 10-5-3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Loss</td>
<td>$9.3b</td>
<td>$57.4b</td>
<td>$33.4b</td>
</tr>
<tr>
<td>CFA</td>
<td>9.5%</td>
<td>10.2%</td>
<td>9.8%</td>
</tr>
<tr>
<td>N</td>
<td>10.7</td>
<td>11.9</td>
<td>11.3</td>
</tr>
<tr>
<td>NCFPA</td>
<td>9.9</td>
<td>10.9</td>
<td>10.4</td>
</tr>
<tr>
<td>NCF</td>
<td>10.1</td>
<td>11.4</td>
<td>10.7</td>
</tr>
</tbody>
</table>

40 Per Cent Liberalization of Depreciation Allowances

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Loss</td>
<td>$12.7b</td>
<td>$32.9b</td>
<td>$22.8b</td>
</tr>
<tr>
<td>CFA</td>
<td>9.5%</td>
<td>10.2%</td>
<td>9.8%</td>
</tr>
<tr>
<td>N</td>
<td>10.7</td>
<td>11.7</td>
<td>11.2</td>
</tr>
<tr>
<td>NCFPA</td>
<td>9.9</td>
<td>10.7</td>
<td>10.3</td>
</tr>
<tr>
<td>NCF</td>
<td>10.3</td>
<td>11.3</td>
<td>10.8</td>
</tr>
</tbody>
</table>

First-Year Capital Recovery

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Loss</td>
<td>$48.8b</td>
<td>$66.4b</td>
<td>$57.6b</td>
</tr>
<tr>
<td>CFA</td>
<td>9.7%</td>
<td>10.8%</td>
<td>10.2%</td>
</tr>
<tr>
<td>N</td>
<td>10.8</td>
<td>11.7</td>
<td>11.3</td>
</tr>
<tr>
<td>NCFPA</td>
<td>10.2</td>
<td>10.9</td>
<td>10.5</td>
</tr>
<tr>
<td>NCF</td>
<td>10.4</td>
<td>11.4</td>
<td>10.9</td>
</tr>
</tbody>
</table>

Notes:
- CFA = cash flow with accelerator term
- N = neoclassical
- NCFPA = neoclassical with cash flow and pollution abatement adjustment
- NCF = neoclassical with cash flow
- Revenue Loss = static change in U.S. Treasury nominal tax revenue in billions of dollars
over the 1980-89 period, while the cash flow with accelerator model predicts a 9.9 per cent share. The results of the corporate rate reduction experiment suggest somewhat lower investment-GNP ratios, but part of this is due to the difference in average revenue loss ($18.1 billion versus $23.0 billion). The 40 per cent liberalization of depreciation allowances has almost the same average revenue loss over the 1980-89 period as the investment tax credit, but its implied investment-GNP shares are from 0.1 to 0.3 percentage points lower. Of particular interest are the results of the phased-in 10-5-3 proposal and the first-year capital recovery plan in comparison to the investment tax credit. Despite the sharply higher costs of these two accelerated depreciation tax cuts, only in one case is the estimated investment-GNP share higher than the corresponding ratio under the investment tax credit.

As a whole, the empirical results indicate that investment-GNP ratios may average between 10 and 11.5 per cent, depending on the type of tax cut enacted. Thus, the enactment of a business tax cut may be expected to raise the investment-GNP ratio by about 0.5 percentage points. This outcome would imply a historically high investment share for a period as long as a decade.

It is possible that this amount of investment would ensure adequate expansion of productive capacity, but it is also possible that these tax cut policies by themselves may not be enough. Lower inflation and more rapid and stable growth of real GNP may also be needed to provide stimulus to business fixed investment. Additional fiscal and monetary policy actions may therefore be required to achieve these goals. Furthermore, if investment does not grow sufficiently during the early to mid-1980s, larger business tax reductions might be considered to respond to any apparent investment shortfall.

CONCLUSIONS

Substantial increases in business fixed investment will probably be required during the decade of the 1980s. Two main factors motivate this need for an acceleration in investment spending. First, increased investment is required to achieve past rates of capital stock growth and related benefits such as higher labor productivity growth. Second, a significant portion of future investment spending will be devoted to the extraordinary investment requirements associated with pollution abatement and past rises in the relative price of energy.

To guarantee rapid increases in capital formation throughout the 1980s, the early enactment of a business tax cut has been advocated by many observers. Among the three general types of business tax packages examined in this article, increases in the investment tax credit were found to be the most effective. Moreover, an analysis of different tax cut proposals indicated that business tax reductions may have to exceed $20 billion to ensure that the investment needs of the 1980s will be satisfied.
APPENDIX

Table A1
ESTIMATION RESULTS: EQUIPMENT
(1960:1-1978:IV)

<table>
<thead>
<tr>
<th>Model</th>
<th>a</th>
<th>Σb_s</th>
<th>Σc_s</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>rho</th>
<th>R^2</th>
<th>SE</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized Accelerator</td>
<td>-9.976</td>
<td>2.138</td>
<td>.1778</td>
<td>.876</td>
<td>.995</td>
<td>1.33</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash Flow with Accelerator</td>
<td>-13.38</td>
<td>1.580</td>
<td>.2696</td>
<td>.1346</td>
<td>.830</td>
<td>.995</td>
<td>1.30</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoclassical</td>
<td>-9.929</td>
<td>.1407</td>
<td>.2093</td>
<td>.925</td>
<td>.993</td>
<td>1.51</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCFPA</td>
<td>-8.638</td>
<td>.0163</td>
<td>-18.65</td>
<td>-.0372</td>
<td>.1184</td>
<td>.0528</td>
<td>.794</td>
<td>.996</td>
<td>1.16</td>
<td>1.77</td>
</tr>
<tr>
<td>Neoclassical with Cash Flow</td>
<td>-9.714</td>
<td>.0012</td>
<td>-19.45</td>
<td>.1420</td>
<td>.772</td>
<td>.995</td>
<td>1.26</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- NCFPA = neoclassical with cash flow and pollution abatement adjustment
- rho = estimated autocorrelation coefficient
- R^2 = adjusted multiple correlation coefficient
- SE = standard error in billions of 1972 dollars
- DW = Durbin-Watson statistic

Numbers in parentheses are t-statistics.

Table A2
ESTIMATION RESULTS: STRUCTURES
(1960:1-1978:IV)

<table>
<thead>
<tr>
<th>Model</th>
<th>a</th>
<th>Σb_s</th>
<th>Σc_s</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>rho</th>
<th>R^2</th>
<th>SE</th>
<th>DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalized Accelerator</td>
<td>15.02</td>
<td>1.251</td>
<td>.0331</td>
<td>.938</td>
<td>.972</td>
<td>.904</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash Flow with Accelerator</td>
<td>8.596</td>
<td>.9039</td>
<td>.1779</td>
<td>.0176</td>
<td>.806</td>
<td>.975</td>
<td>.855</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoclassical</td>
<td>9.488</td>
<td>.0418</td>
<td>.0642</td>
<td>.958</td>
<td>.966</td>
<td>1.01</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCFPA</td>
<td>1.835</td>
<td>.0025</td>
<td>-44.87</td>
<td>-.0231</td>
<td>.1198</td>
<td>.850</td>
<td>.968</td>
<td>.975</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>Neoclassical with Cash Flow</td>
<td>-9.714</td>
<td>.0012</td>
<td>-19.45</td>
<td>.1022</td>
<td>.878</td>
<td>.967</td>
<td>.984</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- NCFPA = neoclassical with cash flow and pollution abatement adjustment
- rho = estimated autocorrelation coefficient
- R^2 = adjusted multiple correlation coefficient
- SE = standard error in billions of 1972 dollars
- DW = Durbin-Watson statistic

Numbers in parentheses are t-statistics.
Have Regulatory Differences Between Banks and PCA’s Affected Bank Performance?

By Kerry Webb

As non-real estate farm debt has grown rapidly during the last decade, farmers have increasingly turned to institutional lenders for additional funds. There are numerous lenders from which farmers can borrow, but commercial banks and Production Credit Associations (PCA’s) account for approximately 70 per cent of the outstanding non-real estate farm loans. In spite of the fact that banks and PCA’s both lend to farmers for the same purposes, the two institutions operate under considerably different legal and regulatory frameworks.

Many observers feel that PCA’s possess competitive advantages in competing with banks for agricultural loans and that these advantages have resulted in PCA’s being able to maintain or increase their market share at banks’ expense. Moreover, many rural bankers view these competitive differences as potentially leading to declines in bank performance and profitability. This article compares the major institutional and regulatory differences under which banks and PCA’s operate and examines the effects these differences may have on bank profitability and market share.

CHARACTERISTICS OF NON-REAL ESTATE FARM LOANS

Since 1976, outstanding non-real estate farm debt has nearly doubled, rising from $39.4 billion to $70.7 billion in 1980, and now accounts for 45 per cent of total farm debt. This increase has been primarily due to inflation of prices paid by farmers for production items, to the movement toward larger and more specialized farming operations, and to variable and often lagging increases in the prices of farm products. As a result, farmers have increasingly turned to institutional lending to finance their production requirements.

The primary use of non-real estate farm loans has been to finance those inputs which are used up in one production season. Quarterly survey data collected by the Federal Reserve System since 1977 indicate that livestock loans average about 37 per cent of the total non-real estate farm loans made by banks, while loans

Kerry Webb is an assistant economist with the Federal Reserve Bank of Kansas City.
Table 1
OUTSTANDING NON-REAL ESTATE FARM DEBT ON JANUARY 1
PER CENT OF TOTAL HELD BY VARIOUS LENDERS
(EXCLUDES CCC LOANS)

<table>
<thead>
<tr>
<th></th>
<th>Total (Millions of Dollars)</th>
<th>Commercial Banks</th>
<th>PCAs</th>
<th>Farmers Home Administration</th>
<th>Individual and Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>39,405</td>
<td>51.2</td>
<td>27.3</td>
<td>4.5</td>
<td>17.0</td>
</tr>
<tr>
<td>1977</td>
<td>45,061</td>
<td>51.7</td>
<td>27.1</td>
<td>4.2</td>
<td>17.0</td>
</tr>
<tr>
<td>1978</td>
<td>51,142</td>
<td>50.3</td>
<td>26.4</td>
<td>6.1</td>
<td>17.1</td>
</tr>
<tr>
<td>1979</td>
<td>59,998</td>
<td>47.4</td>
<td>25.2</td>
<td>9.0</td>
<td>18.4</td>
</tr>
<tr>
<td>1980</td>
<td>70,700</td>
<td>43.9</td>
<td>25.8</td>
<td>12.7</td>
<td>17.5</td>
</tr>
</tbody>
</table>

for meeting other current operating expenses average about 36 per cent.¹ Machinery loans average about 9 per cent of the total. The surveys also indicate that the weighted average maturity on these loans has declined from about nine months in 1977 to about seven months in 1980.

Market shares of non-real estate farm loans have also changed somewhat during the last five years. As shown in Table 1, the market share of commercial banks has declined from about 51 per cent in 1976 to 44 per cent in 1980, while the share for PCA's has stayed about 25 per cent during the period. Moreover, Farmers' Home Administration loans accounted for 5 per cent of the market in 1976, but total about 13 per cent presently. Loans made by individuals and others account for 17-18 per cent of the market.

REGULATORY AND INSTITUTIONAL FRAMEWORK

Commercial banks operate under a complex set of state and Federal regulations which affect their lending and pricing. Regulations are imposed for at least four major reasons: to help ensure appropriate monetary policy, to maintain a financially sound banking environment, to provide an efficient intermediation process, and to ensure adequate levels of community banking services.² At times, bankers have been constrained on the terms of loans they could offer by usury laws, by structure restrictions, and by other regulatory and institutional factors which have little or no effect on some nonbank lenders.

One of the most pronounced examples of differing institutional arrangements and regulatory limitations is the framework under which banks conduct agricultural lending as compared to the framework under which PCA's operate. Some of the main differences are discussed below.³

³ For discussion of additional regulatory differences, see Peter J. Barry, “Prospective Trends in Farm Credit and Fund Availability,” Future Sources of Loanable Funds for

18

Federal Reserve Bank of Kansas City
Fund Acquisition and Lending Limitations

Commercial banks and PCA’s acquire loanable funds differently. For the majority of small rural banks, where about 70 per cent of bank agricultural production loans are made, loanable funds are primarily derived from agricultural-related savings and demand deposit flows. Yet, at those times when deposit flows are substantially lower than normal—e.g., when farm prices are depressed—the greatest loan needs and fund shortages often arise. Rural banks may then attempt to obtain additional funds through more costly time deposits and borrowed liabilities or arrange selling and participation agreements with other commercial banks and lenders. On the whole, however, rural banks have not raised large amounts of funds in these ways, and so their lending capability has remained closely tied to their own resources.

The situation faced by PCA’s, however, is entirely different. Farm Credit System funds are obtained through the sale of bonds and notes in national money markets. These funds are then channeled through the Federal Intermediate Credit Banks to the PCA’s. Thus, PCA’s raise money through sources that are not dependent upon the local agricultural economy. In addition, a PCA can participate with other PCA’s or its respective Federal Intermediate Credit Bank in financing farm loans. As a result, PCA’s have a more reliable and often lower cost source of funds than many agricultural banks.

Lending limits at commercial banks are also structured differently than those at PCA’s.

State and Federal regulations restrict the size of bank loans to individual customers to 10-25 per cent of a bank’s unimpaired capital stock and surplus, depending on whether the loans are secured by livestock or warehouse receipts to readily marketable nonperishable crops. Nevertheless, an increasing proportion of rural banks must either turn to correspondents for loan participations or refuse loan requests. To establish a correspondent relationship, a rural bank is often required to maintain a compensating balance at the correspondent bank equal to 10-20 per cent of the correspondent’s loan share. This practice can have the effect of draining funds from rural areas when they are most needed. In addition, when tight credit conditions affect correspondents, they may be uninterested in, or unable to meet, the respondent bank requests for loan participations.

Lending limits at PCA’s are generally less restrictive than for commercial banks. Their limits are set at 50 per cent of capital and surplus, and if an approved loss-sharing agreement is in force, the limit can be increased to 100 per cent. Thus, PCA’s have more flexibility in servicing the needs of large borrowers.

Reserve Requirements

The main purpose of reserve requirements is to facilitate monetary policy, and with passage of the Depository Institutions Deregulation and Monetary Control Act of 1980 (MCA), uniform reserve requirements have been imposed on all depository institutions having transaction accounts or nonpersonal time deposits. These institutions include commercial banks, savings banks, savings and loan associations, credit unions, and industrial banks. When the phase-in period is completed, all depository institutions will be required to maintain a 3 per cent reserve against the first $25 million of transaction accounts, and a 12

Agricultural Banks, forthcoming proceedings of a symposium sponsored by the Federal Reserve Bank of Kansas City.

per cent reserve on total transaction accounts above $25 million. In addition, all depository institutions will be required to maintain reserve against nonpersonal time deposits (including savings deposits) with maturities of less than 4 years at a ratio of 3 per cent. It should be noted, however, that MCA eliminated reserves held against personal time deposits, and that these deposits constitute a large and growing share of deposits at rural banks. All reserves must be held in either noninterest bearing accounts at a Federal Reserve Bank or as vault cash. However, to individual banks and other depository institutions, reserve requirements represent a reduction in investable funds.

As part of the Farm Credit System, PCA's are not depository institutions and are not subject to the 1980 Act. PCA's are not required to maintain reserves and do not incur the costs associated with this type of non-income-producing account.

Usury Limits

In the past, many states have adopted usury limits which allow interest rates to rise no further than some predetermined level. Passage of MCA, however, preempted state usury ceilings on business and agricultural loans in excess of $25,000 and permits an interest rate of up to 5 per cent above the Federal Reserve discount rate. This provision expires on April 1, 1983, or at an earlier date if a state adopts a law reinstating its own ceiling.

When market rates rise to the usury ceilings, commercial banks tend to shift their portfolios to those investments with returns that maintain desired profit margins. During periods of rising interest rates, farmers have often found loans more difficult to obtain as some banks moved out of the farm lending market and into more profitable investments. Consequently, usury laws have tended to impede farm lending during periods of high interest rates.

Although never specifically stated in the law, Farm Credit Banks and their outlets, such as PCA's, have generally considered themselves exempt from state usury ceilings because legislative history indicated that was the congressional intent.\(^5\) Thus, PCA's have been able to pass increased costs of funds on to their customers as market rates have risen. Although the loans at times have been expensive, they have always been available for qualified farm customers willing to pay the higher rates.

Tax Policies

Both commercial banks and PCA's are subject to Federal income taxes in the same manner as other corporations. However, since PCA's are cooperatives, the issuance of patronage refunds reduces their income subject to Federal taxation. The Internal Revenue Service requires at least 20 per cent of the refund be paid in a cash disbursement, in which case the tax incidence for the total refund falls on the patron. The remaining 80 per cent can be paid out in the form of a noncash disbursement to the patron, such as stock issues in the PCA. Such a noncash disbursement results in an increase in equity capital. Either way, the patronage refund reduces the tax liability. Consequently, PCA's (and other Farm Credit System lenders) have greater flexibility in shifting tax incidence and reducing tax liability than do commercial banks, and thus appear to have a competitive edge in accumulating internal capital.

BANK PERFORMANCE

Many bankers believe that these differences give PCA’s an advantage over banks in

\(^5\) Enactment of the Farm Credit Act Amendments in December 1980 specifically exempted all PCA lending from state usury ceilings.
competing for non-real estate farm loans.6 Bankers often feel they are operating under rules that both restrict their lending ability and raise their costs relative to PCA's. These differences, they contend, have been partly responsible for the decline in bank market share of non-real estate farm loans while enabling PCA's to continue to hold their market share. Moreover, many bankers believe that smaller market shares may result in lower bank profitability, particularly for rural banks where opportunities for nonagricultural investments may be limited.7 If one presumes that market share is important to bank profitability, one would expect that banks with large non-real estate farm loan market shares to also have larger profits and stronger overall performance. If so, differences in regulatory frameworks that result in declining bank market shares would be considered economically harmful to banks.

On the other hand, if banks with low market shares are as profitable or more profitable than banks with high market shares, one could conclude that long-run differences in the regulatory framework between banks and PCA's may have little effect on bank performance. Presumably then, banks could profitably adjust to market share shifts.

Table 2 shows the ranges of market share of non-real estate farm loans held by all commercial banks located in PCA districts in Colorado, Iowa, Kansas, Nebraska, Oklahoma, and South Dakota. As shown, banks in some districts have much larger market shares relative to PCA's than banks in other districts. For example, in Kansas almost 97 per cent of the non-real estate farm loans in one PCA district were made by banks, whereas in another district the figure was only 64 per cent.

Because substantial variation within individual states exists in the share of non-real estate farm loans held by banks, it is possible to compare the performance of banks in areas where they maintain a large market share to the performance of banks in areas where they maintain a low market share. In each of the six states, key performance measures, such as capital-to-asset ratios, of agricultural banks located in the two PCA districts where the banks have the largest market shares were calculated and compared to the same ratios of agricultural banks in the two districts where the banks have the lowest market shares.8 When a wide range of ratios are examined, this

<table>
<thead>
<tr>
<th>State</th>
<th>Bank Market Share Ranges (%)</th>
<th>Average Market Share (%)</th>
<th>Number of PCA Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado</td>
<td>38.7 - 72.5</td>
<td>61.7</td>
<td>7</td>
</tr>
<tr>
<td>Iowa</td>
<td>63.6 - 87.5</td>
<td>78.2</td>
<td>16</td>
</tr>
<tr>
<td>Kansas</td>
<td>64.0 - 96.7</td>
<td>82.4</td>
<td>14</td>
</tr>
<tr>
<td>Nebraska</td>
<td>58.2 - 87.9</td>
<td>79.7</td>
<td>14</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>51.7 - 91.8</td>
<td>77.8</td>
<td>14</td>
</tr>
<tr>
<td>South Dakota</td>
<td>64.0 - 89.5</td>
<td>79.2</td>
<td>9</td>
</tr>
</tbody>
</table>

SOURCE: Market Shares were calculated based on loan amounts outstanding and were obtained from the June 1979 Call Report for all commercial banks and from the Omaha and Wichita Federal Intermediate Credit Banks.

*Loans made by governmental agencies, individuals, and other are not included in these figures.

Table 3
T-Statistics of Agricultural Bank Performance Ratios

<table>
<thead>
<tr>
<th>Performance Ratios</th>
<th>Colorado</th>
<th>Iowa</th>
<th>Kansas</th>
<th>Nebraska</th>
<th>Oklahoma</th>
<th>South Dakota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profitability:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equity Capital/Total Assets</td>
<td>1.98‡</td>
<td>.65</td>
<td>.87</td>
<td>1.01</td>
<td>-1.40*</td>
<td>.82</td>
</tr>
<tr>
<td>Net Income/Total Assets</td>
<td>.19</td>
<td>.96</td>
<td>.25</td>
<td>.56</td>
<td>1.03</td>
<td>- .99</td>
</tr>
<tr>
<td>Net Income/Total Operating Income</td>
<td>- .36</td>
<td>.82</td>
<td>.39</td>
<td>.79</td>
<td>.19</td>
<td>-1.06</td>
</tr>
<tr>
<td>Net Income/Equity Capital</td>
<td>-1.86*</td>
<td>.40</td>
<td>.24</td>
<td>- .91</td>
<td>1.88†</td>
<td>-1.42*</td>
</tr>
<tr>
<td>Loan Quality:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loan Losses/Total Loans</td>
<td>1.46*</td>
<td>5.4</td>
<td>-1.71†</td>
<td>.11</td>
<td>.35</td>
<td>-1.22</td>
</tr>
<tr>
<td>Rates of Return:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest and Fees on Loans/Total Loans</td>
<td>2.15‡</td>
<td>1.65†</td>
<td>-2.19‡</td>
<td>.88</td>
<td>1.75†</td>
<td>- .13</td>
</tr>
<tr>
<td>Interest on Treasury and Agency Securities/Treasury and Agency Securities Outstanding</td>
<td>1.17</td>
<td>.88</td>
<td>.25</td>
<td>- .11</td>
<td>.95</td>
<td>- .39</td>
</tr>
<tr>
<td>Interest Expense:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest on Large CDs/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large CDs Outstanding</td>
<td>.66</td>
<td>-1.03</td>
<td>-1.13</td>
<td>.52</td>
<td>1.21</td>
<td>- .23</td>
</tr>
<tr>
<td>Interest on All Time and Savings Deposits/Time and Savings Deposits Outstanding</td>
<td>.39</td>
<td>-.50</td>
<td>1.00</td>
<td>1.00</td>
<td>-.01</td>
<td>.78</td>
</tr>
<tr>
<td>Growth (December 1978-December 1979):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage Change in Net Income</td>
<td>1.27</td>
<td>1.08</td>
<td>.30</td>
<td>-1.59*</td>
<td>1.26</td>
<td>1.31*</td>
</tr>
<tr>
<td>Percentage Change in Total Assets</td>
<td>.27</td>
<td>.51</td>
<td>.12</td>
<td>-1.72†</td>
<td>-.20</td>
<td>.36</td>
</tr>
</tbody>
</table>

*Significantly different from zero at the 20 per cent level.
†Significantly different from zero at the 10 per cent level.
‡Significantly different from zero at the 5 per cent level.

The procedure allows for a fairly detailed analysis of bank performance between the two groups of banks in each state.⁸

Performance Results

Performance ratios are used to judge the growth and profitability of the banks, to indicate the success of management decisions and serve as measures of financial strength. The ratios examined in this study provide general measures of profitability, loan quality, rates of return, interest expense, and growth.

⁸ An agricultural bank was defined as having at least 35 per cent of its loans in agricultural loans (25 per cent in Colorado) and total assets of less than $100 million.

⁹ Specifically, individual bank data were averaged over the 1979 quarterly Call and Income Reports. These data were then used to get respective average ratios for banks in high and low market share areas. A "t-test" was then applied to determine if there was any statistical difference between the average of the two groups. For further explanation on the procedure, see Jan Kmenta, *Elements of Econometrics*, Macmillan, New York, 1971, pp. 136-9.
Table 3 presents t-statistics of agricultural bank performance ratios calculated in the manner described above. The t-statistics measure the degree of statistical difference between the average performance ratios for the two groups of banks. The closer the t-statistics are to zero (regardless of their sign), the lower the statistical significance of the difference between the average ratios. In this case, the performance of the low market share banks would likely be as profitable as that of the high market share banks. On the other hand, larger t-statistics imply that the likelihood of significant differences between the two groups of banks becomes greater. Hence, ratios with larger t-statistics indicate that the performance of the two groups of banks would likely be very dissimilar, suggesting differences in the profitability of high market share banks as compared to low market share banks. The negative t-statistic merely indicates that low market share banks had a larger average ratio than high market share banks.

The most striking result shown in Table 3 is the general lack of statistical difference between the average ratios for the two groups of banks. Low market share banks generally exhibit rates of return, growth, and profitability ratios that are not significantly different than high market share banks. As shown in Table 3, there are only three cases where there is any large difference (i.e., statistically significant at the 5 per cent level or less) between the performance ratios of the two groups of banks. In Colorado, for example, banks with high market shares have larger capital-to-asset ratios and interest returns on total loans than low market share banks. In Kansas, it is the low market share banks that receive more interest on total loans. In all other cases, the results indicate that the performance ratios of the two bank groups are, in general, the same. Therefore, these results would tend to show that although PCA’s may have relatively large market shares in some areas, bank performance in those areas is generally unaffected and apparently is not dependent upon a large non-real estate farm loan market share. Consequently, although differences exist between the regulatory frameworks of banks and PCA’s, which may indeed lead to market share shifts, they may not be as significant as many observers believe.

CONCLUSIONS

During the last decade, non-real estate farm lending has grown rapidly in an increasingly competitive environment among the various institutional lenders. Commercial banks and PCA’s, the two largest lenders, operate under very different frameworks, with PCA’s facing generally less stringent regulations concerning lending limits, reserve requirements, usury laws, and tax policies. Nevertheless, in some areas, rural banks have retained a much larger share of non-real estate farm loans than PCA’s, while in other areas—although PCA’s have captured a larger share of the market—banks are just as profitable as those with large market shares. Thus, while some may conclude that PCA growth has been due to the differences in the regulatory framework, it appears that the resulting effect upon bank performance has not been economically harmful.