

Key Findings and Insights: Empirics

- Good fit of the Taylor rule for the U.S. over 1987-2008 (and 1965-1979 when using real time data). But not since 2008.
 - Policy rate too high during ZLB episodes
 - Less than one-for-one rate increases during the recent inflation surge
- Generally poor fit for G7 countries (exception: UK)
- Post-Covid inflation surge:
 - Lower inflation in countries with historically low average inflation, despite smaller and delayed rises in the policy rate
 - Interpretation: gains from well-anchored inflation expectations

Key Findings and Insights: Theory

- Taylor principle and indeterminacy:
 - relevant for off-equilibrium paths only
 - weakened in "less forward looking" economies (Dupraz and Marx)
- Optimal policy may imply less than one-for-one responses to observed inflation
 - Illustrated using an NK model with cost-push shocks under both discretion and commitment
 - More likely if: "correlated shocks" or "long and variable lags"
- Overall conclusion: the weak and delayed policy response to the recent inflation surge in the U.S. and other countries with wellanchored inflation expectations may be consistent with "good policy".

The Taylor Rule: Limitations of a Useful Tool

- The "generic" Taylor Rule: $i_{t} = \alpha + \phi_{\pi} \pi_{t} + \phi_{y} y_{t}$
- with $\phi_{\pi} > 1$ and $\phi_{\nu} \ge 0$. Intuition.
- Positive interpretation: fits well the Great Moderation period
- Normative interpretation: deviations as "bad policy"
 - Recent inflation surge: $\Delta i \simeq 4\,pp << \Delta \pi \simeq 8\,pp$

Two Considerations

- 1. Optimal policies often do not have a TR representation and/or lead to outcomes that do not satisfy the TR
 - NRS illustration (I): optimal discretionary policy in an NK model with cost-push shocks generates the relation $i_t = \alpha + \phi_\pi \pi_t + \varepsilon_t$ with ϕ_π possibly less than one.

Comment: $i_t = \alpha + \phi_{\pi} E_t \{ \pi_{t+1} \} + \varepsilon_t$ with $\phi_{\pi} > 1$ (CGG specification)

• NRS illustration (II): simulation of optimal policy with commitment often generates estimates of ϕ_{π} less than one or even negative.

Comment: response to deviations of the *price level* from target

2. Simple rules known to have good properties often imply weak short run response of the policy rate (e.g. TR with partial adjustment)

An Alternative Approach*

- Focus on the relevant rate: the Long Real Rate
 - Long real rate rules, both in theory and empirics
- Robust feature of optimal policy in inflation targeting regimes: positive response of the LRR to inflation ("long Taylor principle")
 - Required independently of degree of anchoring
 - Sufficient for determinacy in basic NK model
- Advantages
 - Captures forward guidance and QE
 - Simplifies model analysis and equilibrium solution

^{*} Galí (in progress): "Rethinking the New Keynesian Model"

The U.S. Long Real Rate

An Estimated Long Real Rate Rule for the U.S.

$$r_{t}^{L} = \phi_{0} + \phi_{r} r_{t-1}^{L} + \phi_{\pi} \pi_{t} + \phi_{y} y_{t} + \varepsilon_{t}$$

(1)	(2)	(3)	(4)	(5)	(6)
0.08***	0.06**	0.09***	0.09***	0.10**	0.10**
	0.02		0.04*		0.02
		-0.04	-0.05		
				-0.01	-0.05
		0.08***	0.08*** 0.06** 0.09***	0.08*** 0.06** 0.09*** 0.09*** 0.02 0.04*	0.08*** 0.06** 0.09*** 0.09*** 0.10** 0.02 0.04* -0.04 -0.05

Sample period: 1991:4-2024:4

Monetary Policy Responses to the Inflation Surge: U.S. vs Brazil

De-Anchoring Measures

- NRS: Long-run average inflation
 - may be distorted by long forgotten episodes
 - ignores de-anchoring on the downside
- Possible alternatives
 - Average absolute deviation from target
 - Response of long-run inflation expectations to short-run inflation changes
 - Volatility of long-run inflation expectations

