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Abstract

Machine learning and artificial intelligence methods are often referred to

as “black boxes” when compared to traditional regression-based approaches.

However both traditional and machine learning methods are concerned with

modeling the joint distribution between endogenous (target) and exogenous

(input) variables. The fitted models are themselves functionals of the data,

about which we can do statistical inference using computationally intensive

methods such as the bootstrap. Where linear models describe the fitted re-

lationship between the target and input variables via the slope of that rela-

tionship (coefficient estimates), the same fitted relationship can be described

rigorously for any machine learning model by first-differencing the partial de-

pendence functions. Bootstrapping these first-differenced functionals provides

standard errors and confidence intervals for the estimated relationships. We

show that this approach replicates the point estimates of coefficients attained

in a linear OLS models, and demonstrate how this generalizes to marginal re-

lationships in ML/AI models. This paper extends the partial dependence plot
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described in Friedman (2001), and visualizes the marginal distribution used to

construct the PDP as described in Goldstein et al. (2015) before applying the

steps described above. We further discuss the extension of PDP into a Shapley

value decomposition and explore how it can be used to further explain model

outputs. We conclude with a hedonic house pricing example, which illustrates

how machine learning methods such as random forests, deep neural net, and

support vector regression automatically capture nonlinearities and shed light

on inconsistencies revealed by meta-studies of hedonic house pricing.

JEL Classifications: C14, C18, C15

1 Introduction

Machine learning (ML) methods are often regarded as a black box: they may capture

useful interactions and nonlinearities in data, but the shape and nature of the rela-

tionships are not easy to ascertain. At the same time, there is a growing appetite to

use ML models in finance and economics for purposes ranging from academic study

to credit underwriting. As such, it is important that we can adequately interpret ML

models.

At a fundamental level, when we go about the exercise of ‘interpreting’ a model,

we are going about the exercise of trying to ascertain the marginal effects of the input

variables – the effect of a change in an input variable on the model’s prediction. For

linear models, this marginal effect can be easily ascertained in terms of point-estimates

and variances of the model’s parameter estimates (i.e. estimated coefficients of the

model). Further, these effects are easily summarized and communicated in tabular

form (a so-called regression table). For machine learning models, there are no ana-

logues to such tables. The reason is straightforward. For linear models, the marginal

effects of the variables of interest are constant and are described entirely by the values

of the estimated parameters. By contrast, machine learning models learn complex

relationships wherein the marginal effect of the variables of interest are contingent on

various estimated aspects of the model along with the values of model covariates. For

neural networks, for example, there are many underlying parameters that correspond

to the marginal effect of a given RHS variable. For a support vector regression, the

regularization parameter is important but knowing the optimal regularization value
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for a given dataset, and even knowing a (5%, 95%) confidence interval around the

optimal regularization parameter, communicates very little about the marginal rela-

tionships of interest. What is needed is a model-agnostic way to describe the marginal

effects between the model target and input variables of interest, ideally which repro-

duces the coefficients for a linear regression.

Fortunately, Friedman (2001) constructed a functional that generalizes OLS coef-

ficient estimates and is model-agnostic: the partial dependency function, more widely

known as the partial dependency plot (PDP). As the name indicates, this function is

often displayed as a plot of a partial relationship.1 Traditionally in the ML literature

the PDP is displayed in levels, and only the point estimate of the PDP is calculated.

However it is straightforward to demonstrate that when applied to linear regression,

the first difference of the PDP directly replicates the coefficients of that regression,

and bootstrapping the PDP produces standard errors and p-values comparable to

the analytical results of running OLS. When applied to non-linear ML models, this

approach generalizes the concept of the coefficient in a model-agnostic way. Applying

the PDP to non-linear models, we can ascertain the nature of the fitted relationship

in a way that is familiar to our understanding of the interpretation of a linear model.

We can further extend the logic of the PDP to understand variable importance as

well.

This paper contributes to the extensive and fast-growing interpretability literature

in machine learning. Breiman (2001) provides an introduction to interpretability vs

prediction in machine learning. Semenova, Rudin, and Parr (2019) and Molnar (2021)

are two modern overviews of ML interpretability that provide a wide survey of the

field. This paper in particular extends the partial dependence plot (PDP) described

in Friedman (2001), and visualizes the marginal distribution used to construct the

PDP as described in Goldstein et al. (2015)2. Section 3 provides similar discussion

with respect to Shapley values (Shapley, 1953) and in response to two additional

aspects of model interpretation: the effect of input inclusion and feature importance.

Discussion of both the PDP and Shapley values demonstrate their equivalence to

1The marginal relationship between a target variable and a given input variable are non-linear
over the range of the selected RHS variable for the general machine learning model, whereas the
same relationship is linear for a simple OLS regression.

2The PDP is closely related to the “observed-value” approach described in Hanmer and Ozan
Kalkan (2013) as well.

3



parameter estimates in the context of a linear model.

The illustrative hedonic house pricing model employed is inspired by the meta-

analysis in Sirmans, Macpherson, and Zietz (2005) and Zietz, Zietz, and Sirmans

(2008), and the data used is described in De Cock (2011).

The rest of this paper is organized as follows: Section 2 outlines how PDP can

be constructed as a generalization of linear model coefficients. Section 3 provides a

similar discussion with regard to Shapley values. Section 4 applies our results to the

hedonic house-pricing exercise, and Section 5 concludes.

2 Model Agnostic Approaches to Inference

There are two commons purposes for constructing statistical models that relate left-

hand side (target) variable, to a right-hand side (input) variable (in machine learning

parlance, a supervised learning problem).

The first purpose is prediction: given a new observation of inputs, predict the

associated target. This is a common use case, and improved predictive performance is

an often-cited reason for employing ML and AI models in place of traditional models.3

The second purpose is inference: rather than predict the model target, the em-

phasis is on describing the world by examining the relationship between the target

and the inputs captured by the model for the data set the model has been fit to,

and describing the statistical properties of that relationship. For example, does a

particular variable in the inputs have a positive or negative relationship with the

target? Is that relationship statistically stable? That is, if this model was estimated

on a different draw from the data generating process,would the relationship still be

approximately the same? Or is the relationship so noisy that it is indiscernible?

Inference is one of economists’ primary use cases for statistical models, and an

extensive history of statisticians and economists have developed theoretical founda-

tions for inference in econometrics. The lack of inference tools for ML and AI models

3See chapter 2 of James et al. (2013) for a discussion of prediction and inference in ML and
traditional models, and discussion of ML models’ improved forecast accuracy versus traditional
models.
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reveals itself in slow adoption rates in economics4. In the ML and AI literatures, the

lack of inference tools reveals itself in the rapidly growing literature on explainability

and interpretability.

Fortunately there is a promising path forward for inference, driven by two obser-

vations: First, the marginal relationships between the target and model inputs that

are captured by coefficients in a traditional linear regression model can be estimated

in a more general way that applies to any model. The approach we focus on in this

paper is described in Friedman (2001) as the partial dependency function or “partial

dependency plot” (PDP).5 As described in the following section, the slope of the PDP

is exactly the coefficient in a traditional linear regression6. This is due to the fact that

Friedman (ibid.) constructed the PDP to be a generalization of the “ceteris paribus”

reasoning that is taught regarding regression coefficients in introductory statistics

courses.

Of course the coefficients in a traditional model (and the PDPs for a generalized

model) are only a point estimate of the marginal relationship. We also care about

the variance in this relationship, which brings us to the second observation: as de-

scribed in Efron and Hastie (2016), the bootstrap and related methods can provide a

straightforward if computationally intense way to calculate variance of a wide range

of functions of data. We employ the bootstrap to find the variance in the slope of the

marginal relationships captured by the PDP.

When we apply the PDP to a traditional linear regression model and bootstrap to

obtain the variance, we replicate the traditional point estimates and variances of the

coefficients that one obtains in a standard regression table. When applied to a general

nonlinear ML model, we obtain a generalization of the regression table, which allows

us to conduct inference with the ML model in the same way we conduct inference in

a traditional econometric model via a regression table.

4Although see Athey and Imbens (2019) and Coulombe (2021) for examples of inference on some
ML models and applications in economics.

5As we will describe in more detail later, there are a number of ways to generalize the marginal
relationships that OLS coefficients embody. We focus on the two most popular, PDP and ALE, but
Section 2.5 discusses a number of variations which may have better statistical properties.

6see Appendix C for proofs

5



2.1 PDP and Regression

This section uses two analogies to provide an intuitive description of what the PDP

captures, before turning to the mathematical details. A key insight is that the PDP

helps an economist understand the properties of a fitted model itself.

For the first analogy, suppose that we have a fitted model. We can think of

the PDP as providing a summary statistic about the distribution of results for the

following experiment:

Take an observation and plug it into the fitted model and get a prediction.

Change nothing else about this observation except for a single character-

istic (for example change square footage for a house, but leave number

of rooms, lot size, etc, unchanged). How much does the model output

change? What if we did this with many observations? What is the av-

erage of conducting this experiment over the domain of the variable in

question?

In this sense, the PDP is communicating something about what a fitted model

would in fact predict, if it were asked to predict an observation where only one

characteristic was changed. We are learning something about the fitted model itself

through this process.

Alternatively, we can think of the PDP as analogous to conducting a type of

field experiment has been done in experimental economics, only applied to a model

that makes predictions. For example, in Bertrand and Mullainathan (2004), the

authors submitted a number of resumes to a hiring process, and then change a single

characteristic of the resumes (the name) and examine what changes in the outcomes

(number of call-backs). The PDP essentially implements this experiment on a fitted

model.

If these sounds like the interpretation of coefficients in multiple regression, that’s

because it is. Friedman (2001) constructed PDPs to implement and generalize the

“ceteris paribus” reasoning for interpreting multiple regression coefficients as taught in

most introductory econometrics courses. The main difference is that Friedman (ibid.),

and almost all subsequent ML and AI literature, discusses the PDP in terms of the
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level of the relationship, not the slope of the relationship, which is what traditional

multiple regression coefficients capture.7

Consider a typical description of multiple regression coefficients, drawn from Abdi

(2004) in the Encyclopedia of Social Sciences Research Methods:

“[A] regression coefficient. . . gives the amount by which the dependent

variable (DV) increases when one independent variable (IV) is increased

by one unit and all the other independent variables are held constant.”

The partial dependency function is defined by Friedman (2001) so as to directly

capture this reasoning for any fitted model. This is useful in part because it means

a student who has internalized the intuition of multiple regression coefficients can

employ the same reasoning (and the same caveats!) to understand the relationships

in data represented by an ML or AI model.

We can see this ceteris paribus reasoning implemented in the mathematics of the

PDP applied to a fitted model f̂ .

Write the fitted model as:

f̂(x) = f̂(x(k), x(¬k)) (1)

where f̂ is the fitted model, x is the vector of input variables, and x(k), x(¬k) simply

separate out the single input variable x(k) from all other input variables, x(¬k). For

example, in the hedonic house pricing model to be described, k might represent square

footage; then x(¬k) would represent all other variables which are not square footage,

such as number of bedrooms, age, neighborhood, etc..

The partial dependence function (PDP) for input variable denoted k for fitted

model f̂ is defined as follows:

7The reason for this is likely that tree-based models (what Friedman (2001) invented the PDP to
describe) do not have smooth slopes in their PDP, unlike other methods like support vector machines,
deep neural nets, or kernel ridge regressions (SVMs/SVRs, DNNs, KRRs, respectively), and looking
at the PDP level is natural for a tree. However even for tree-based methods, approximations of the
slope can be examined and provide insights similar to those of smooth methods.
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νk(q) = Ex¬k
[f̂(q, x(¬k))|q] (2)

=

∫
x(¬k)

f̂(q, x(¬k))P(x(¬k))dx(¬k) (3)

where P(x(¬k)) in equation 3 is the marginal distribution over the input data. Thus

the PDP “holds all other independent variables constant” by employing the marginal

distribution directly. If the conditional distribution was used, for example, it would

no longer be true that “all other independent variables are held constant”8 for further

discussion. This is a direct construction of the ceteris paribus assumption employed

in the traditional interpretation of regression coefficients.

The PDP can be estimated using the fitted model and data via Monte Carlo

estimate of ν̂(q) for each value q in a range [qlow, qhigh]:

ν̂k(q) =
1

N

N∑
n=1

f̂(q, x(¬k)n ) (4)

where N is number of observations used and the above is calculated for each q in

the desired domain of the variable k: q ∈
[
x
(k)
min, x

(k)
max

]
.

That is, for each q ∈
[
x
(k)
low, x

(k)
high

]
, the above mean is taken over the empirical

marginal distribution of the fitted values f̂(q, x
(¬k)
n ), where the x(¬k) values in the data

are literally held constant. The resulting PDP function is in levels of the predicted

ŷ variable; one can obtain the slope of this marginal relationship using a simple first

difference approximation. Appendix C proves that for a linear model, this slope is

equivalent to the traditional multiple regressions coefficient.

This partial dependence function of course is a point estimate of this relationship.

If we want the variance in the estimate, then we can employ the non-parametric

(pairs) bootstrap to the entire process as described in the following algorithm:

This is computationally expensive but also an embarrassingly parallel problem.

When this process is applied to a linear model, it directly replicates the traditional

8see Section 2.5
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Algorithm 1 Bootstrap PDP

Preallocate output matrix Z with dimensions (J ×B)

Allocate vector Q as a J-length vector of equally spaced values from
[
x
(k)
low, x

(k)
high

]
for b in 1 to B: do:

Xb, yb =bootstrap(X)
Estimate fb s.t. ŷb = fb(Xb)
for j in [1,J]: do

q = Qj

Z
(b)
j = fb(q,X

(¬k)
b )

Return Z

regression table for point estimates. Bootstrapping this process provides standard

errors around these point estimates and allows for model inference.

2.2 PDP Simulation Exercise

Consider a simple data generating process y = XB′+u where X = (x(1), x(2), x(3), x(4)

is a set of independent covariates and u is an IID random disturbance term, and fix

parameters B = (1, −2, 10, 0). We simulate a sample of 3000 observations from

this dataset and estimate B via OLS regression. The results are presented in the first

column of Table 1 and they have the conventional interpretation.

When we calculate the slope of the PDP for this linear model, we directly repli-

cate the slope estimates of the OLS regression in 1, and bootstrapping provides nearly

equivalent standard errors (we should not expect bootstrapping to replicate the stan-

dard errors to machine precision, as is the case with the point estimates)..

The PDP for the linear model, with bootstrapped confidence interval, is displayed

in Figure 1, and the PDP slope is presented in Figure 2. The average slope of these

PDP lines and average standard deviation are displayed in the second column of Table

1; note that the OLS B point estimates are equal to the values of the PDP slope to

machine precision.9

9Because the PDP slope technically changes over the range of the reference variable, we only
display the average of the slope and average of the standard deviation in the second column of this
this table. Under the special case of a linear model all PDP slope values are the same over the entire
range. This will not be true of a nonlinear ML model as will be demonstrated.

9



We now estimate an ML model – a gradient boosting machine (GBM) – on the

same simulated dataset. Figure 3 displays the PDP in levels for the GBM, while

Figure 4 displays the PDP slope, both with (5%, 95%) bootstrap confidence intervals.

The GBM is nonlinear in its PDP, and there is no single number which can summarize

this slope for each variable. For completeness we have included the average PDP slope

and average PDP bootstrapped variance in the final column of Table 1, but Figures

3 and 4 demonstrate that these averages do not tell the whole story. The nonlinear

GBM, a tree-based method, finds some slight nonlinearities in the edges of the input

variable ranges, and these lower slopes bring down the average slope. Figure 4 displays

the PDP slopes, and the (5%, 95%) confidence intervals demonstrate that all but the

x(4) variable are statistically significant – the same as in the OLS results.

Table 1: Parameter estimates on simulated dataset from linear DGP
Parameter OLS ∆ OLS PDP ∆ GBM PDP

x(1) 1 1.0154 1.0154 0.6242
(0.013) (0.012) (0.281)

x(2) -2 -2.0108 -2.0108 -1.5453
(0.013) (0.012) (0.505)

x(3) 10 10.0188 10.0188 8.6805
(0.013) (0.012) (1.447)

x(4) 0 0.0013 0.0013 -0.0128
(0.013) (0.012) (0.101)

N 3000 3000 3000

Now, consider a dataset with a nonlinearity in the relationship between target and

input variables. Consider the data generating process described above, but allow for

the presence of a nonlinearity in the relationship of x(1) to the model output y, so that

y = (x(1))2γ+XB+ u with B = (0, 5,−5, ε+, ε−), γ = 10, and (ε+, ε−) being positive

and negative values near zero. In this example, an OLS model will only properly

fit the data if the nonlinearity in x(1) is explicitly specified. Most machine learning

models, by contrast, will learn this nonlinear relationship implicitly. Either way, the

presence of a nonlinearity makes direct interpretation of the model more difficult.

The PDP for the OLS model10 is presented in Figure 5. As before, since this

is a linear model, differencing the PDP yields the original OLS estimates and the

10see Appendix A for OLS estimates.
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Figure 1: PDP for OLS model fit to simulated data from linear DGP
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Figure 2: PDP slope for OLS model fit to simulated data from linear DGP
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Figure 3: PDP for GBM model fit to simulated data from linear DGP
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Figure 4: PDP slope for GBM model fit to simulated data from linear DGP
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application of algorithm 1 allows us to closely approximate the standard error of

the OLS estimates. These PDP functions reveal the nonlinear relationship in the

data, but only to the extent that the nonlinearity was explicitly specified11. The

PDP functions confirm what we already know: the linear model does not learn any

relationships between inputs and outputs that are not explicitly linear.

By contrast, consider the PDP for the GBM model as presented in Figure 6.

The GBM will learn a nonlinear relationship between the inputs and target; we do

not need to supply the GBM with an explicit (x(1))2 variable. Looking at the PDP

helps us understand the nature of the relationship that the GBM model has learned.

Examining Figure 6, we see that for x(2) and x(3), the mdoel has learned an approxi-

mately linear relationship, a flat (or null) relationship for x(5), and most importantly,

a distinctly quadratic relationship for x(1).

This ability to use PDPs to infer nonlinear relationships learned by ML mod-

els hints at one approach for fruitfully using ML and OLS models together. First,

estimate a fast ML model (such as a GBM) on the data in question and then use

the PDPs of those models to identify nonlinearities. Add these nonlinearities to the

specification of a corresponding OLS model.12

11i.e. the quantity (x(1))2 is supplied to the model as a precalculated variable.
12An important consideration is how to think about this strategy with respect to the multiple

comparisons problem. Preselecting variable transformations from a ML model and embedding them
in a parametric model may imply that the resulting significance levels in the parametric model are
too narrow. More broadly, think of decompose the estimating of a model into two steps: preliminary
model choice (which transformations and interactions to include in X), and model estimation given
the model choice. If only the second step is included in the variance calculation there may be a
multiple comparisons problem. In the current context, ML models which automatically discover
interactions and nonlinearities as part of the estimation process side-step the multiple comparisons
problem, as the variance calculation applied via bootstrap encompasses both the model choice (with
respect to variable transformations and interactions) and the model estimation steps. If one were to
instead first estimate an ML model, observe the interactions and nonlinearities, add those to a linear
model, estimate the linear model, and then simply accept the default errors for the estimated linear
model, those errors will likely need to be adjusted to account for multiple comparisons. Doing this
appropriately requires more careful thought. See also helpful discussion in Chapter 20, “Inference
After Model Selection,” in Efron and Hastie (2016).
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Figure 5: PDP for OLS model fit to simulated data from linear DGP
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Figure 6: PDP for GBM model fit to simulated data from linear DGP
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2.3 Disadvantages of PDP

This section discusses disadvantages of PDP, and the following section compares PDP

with ALE, the main alternative method.

The two main disadvantages of using PDP are 1) speed and 2) the estimand.

Regarding speed, PDP can be slow to calculate. For a single input variable, with

m points in the input variable range and n data points used to evaluate the PDP, there

are n∗m evaluations of the fitted model needed to construct the PDP. Bootstrapping

this b times means that both b models are required to be fitted and a total of b∗m∗n
model evaluations are needed. This can be computationally costly, although this can

also be embarrassingly parallelized for the bootstrap steps. Regardless, this number

of evaluations can be slow.

Regarding the estimand: PDP is a generalization of the “ceteris paribus” rea-

soning described in the quote from Abdi (2004) in Section 2.1. Like coefficients in a

linear regression, it suffers from the usual downsides of reasoning about global prop-

erties of the model when input variables are not independent from one another. That

is, if input variables are correlated, interact, or have nonlinearities, then the ceteris

paribus assumption doesn’t hold.

To build intuition, in the house-pricing example to be discussed below, consider the

effect of square footage (input) on house prices (target), and think of the interaction

that almost certainly occurs between square footage and number of bedrooms: many

bedrooms is almost certainly associated with higher square footage. Nonetheless, the

ceteris paribus assumption means that when we think about the effect of going from

5000 to 5001, we treat all data as equally likely to experience that change. Consider

a datum that has 1 bedroom and is 500 square feet. The ceteris paribus assumption

implies that when we consider the effect of going from 5000 to 5001 square feet for

this datum, we hold constant the number of bedrooms at 1. This is implicit in the

mathematics of multiple regression, but explicit in the estimation of the PDP for a

linear model – we literally replace 500 square feet with 5000 square feet, predict a

price with the fitted model, do it again with 5001 square feet, and use these values to

extract the slope. This observation under these conditions should likely be very low-

probability, but in the PDP (and in standard multiple regression calculation) they
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are equally weighted with all other observations.13

This can be partially addressed by adding nonlinear manipulations and interac-

tions to a linear model, or in a ML model some of these will emerge from the fitting

process, as was seen above. In this way ML models may be viewed as automatically

addressing some specification problems.

None the less, it is still the case that the PDP uses the marginal distribution of the

data to create the marginal relationship between the input and target variables of the

fitted model. While the PDP as written in Equation 3 generalizes the ceteris paribus

of multiple regression, one might instead prefer to replace the marginal distribution

P(x(¬k)) with the conditional distribution P(x(¬k) | q) to get a “conditional partial

dependence function” (cPDP):

cνk(q) = Ex¬k|q[f̂(q, x(¬k))|q] (5)

=

∫
x(¬k)

f̂(q, x(¬k))P(x(¬k) | q)dx(¬k) (6)

This could be estimated by modifying the Monte Carlo estimator of the PDP

described above, replacing the 1
N

probability with probabilities p(x
(¬k)
n | q) taken

from a joint kernel density over the entire input dataset, and using the conditional

kernel density implied by that for calculating the probabilities:

ĉνk(q) =
N∑
n=1

f̂(q, x(¬k)n )p(x(¬k)n | q) (7)

As with the PDP, the slope can be obtained via a difference approximation. Unfor-

tunately, this conditional PDP is much slower to estimate practically than the typical

PDP.14 Alternatively, the Accumulated Local Effect (ALE) of Apley and Zhu (2020)

13To reiterate, this process directly implements the ceteris paribus assumption of basic linear
model coefficient interpretation – only it makes the improbability of this assumption for corrected
DGPs much more obvious.

14There is almost certainly a trick that can be used with kernel density estimates over the in-
put dataset that can speed this up, but the naive implementation we explored is too slow for use
currently. Apley and Zhu (2020) describes an alternative estimator, ALE, with a similar but not
identical approach to incorporating the conditional PDP. Their implementation does not use the full
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attempts to capture a similar conditional relationship, and seeks to address both the

“estimand” and the “speed” problems of PDP.15 This is the primary model-agnostic

alternative to PDP in the literature.

2.4 Accumulated Local Effect (ALE)

Accumulated Local Effect (ALE) was introduced by Apley and Zhu (2020) and seeks

to address both the “estimand” and “speed” problems described above for PDP.

Where PDP uses the marginal distribution of an explanatory variable to generate

the expected marginal relationship over the range of the selected variable, ALE uses

the conditional distribution as described above.

However the order of integration and differentiation is reversed. The PDP and

cPDP described in the previous sections are first integrated across all observations to

get the expected marginal fitted relationship in levels, and then differentiated to get

the slope of that expected relationship.

ALE reverses this order: a slope estimate for the fitted relationship is first calcu-

lated for each relevant observation16 at each point along the ALE domain, and then

the expectation is taken over these slopes. Thus differentiation is applied to the fitted

relationship first, and integration applied second. This process produces an expected

slope of the fitted relationship between the target and the input variables, which Ap-

ley and Zhu (ibid.) refer to as “local effects.” To get a levels series comparable to

PDP, the authors choose a starting point in the domain of each input variable, and

use the estimates slopes to build a levels series. That is, the local effects are accumu-

lated over the domain of the relevant input variable, hence the name, “Accumulated

Local Effects.” From an econometric perspective, the “local effects” are comparable

to the coefficients in a typical regression table, and we examine these as well.

Where the PDP uses the full information set of the data over the full domain

information set of the input dataset but rather a local approximation; this alternative also switches
the order of integration and differentiation. ALE will be discussed in depth in Section 2.4.

15Note that the “estimand problem” is not a problem if one wants to construct an analogue to
the “ceteris paribus”, coefficient interpretation described thus far.

16As will be described, ALE uses a subset of the data to as the relevant observations for each
point.
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of the function, ALE only uses datapoints that occur within a local region around

each point in the domain of the input variable. Specifically as described in Apley

and Zhu (2020), the domain of the input variable under consideration is divided into

quantiles to ensure that the same number of data points are used for each estimate of

the slope. Thus very low-likelihood areas of the state-space are unlikely to appear in

the calculation of the slope, and the ceteris paribus assumption does not need to be

made. This comes at the cost of using less information than the PDP, and this reveals

itself as wider confidence intervals and “more jagged” ALE lines when compared to

PDP lines calculated on the same fitted model, as can be seen in the appendix.

The mathematical description of ALE from Apley and Zhu (ibid.) is:

ALEk(x
(k)
i ) =

∫ x
(k)
i

x
(k)
min

Ex(¬k)|z(k)

[
f̂ (k)(z(k), x(¬k)) | z(k)

]
dz(k) − C (8)

=

∫ x
(k)
i

x
(k)
min

∫
f̂ (k)(z(k), x(¬k))P(x(¬k) | z(k))dx(¬k)dz(k) − C (9)

where C is a constant, and

f̂
(k)
i (x

(k)
i , x

(¬k)
i ) =

∂f̂(x
(k)
i , x

(¬k)
i )

∂x
(k)
i

(10)

is the individual-level “local effect” of x
(k)
i on the fitted model f̂ at the point

(x
(k)
i , x

(¬k)
i ). As noted previously this process first takes the partial derivative and

then integrates that to get the expectation of the effect. The second, outer integration

is the “accumulation” from some initial starting point to obtain a levels series. The

constant centers the ALE function in its range.17

17Both the ALE and PDP functions as described are the “main effects” functions; interaction
effects can also be constructed but we do not discuss these here.
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2.4.1 Choosing ALE or PDP

As PDP and ALE estimate similar but not identical relationships, one might ask which

to choose. We have chosen to use PDP largely because it reduces the variance in our

final estimate of the marginal relationship we care about, and because it provides a

conceptual bridge between interpreting regressions and interpreting AI/ML models.

However this is not a firm conclusion and may change for any number of reasons.

One could also imagine using both. Recall that each PDP or ALE function must be

constructed individually for each input variable, a costly process. One could imagine

using ALE to quickly examine many relationships, and PDP to examine specific

relationships in depth.

Regardless, this is an appropriate place to compare ALE and PDP. Here are a few

considerations:

Properties that recommend ALE include:

• Speed: less evaluations of the fitted model necessarily imply faster code

• Estimand: PDP implements the ceteris paribus reasoning, but we care about

this in part because this is the reasoning everyone is taught for interpreting OLS

coefficients, providing a conceptual bridge from OLS to ML/AI interpretability.

However we may actually prefer the conditional relationship that ALE describes.

• Direct construction of slope: with PDP, we first construct the levels function

and the first-difference it to get the slope. With ALE, we construct the slope

in the first step.

Properties that recommend PDP include:

• Estimand:

– PDP directly implements the ceteris paribus reasoning, providing a con-

ceptual bridge from OLS interpretation to ML/AI interpretation

– PDP implements the block-recursive causal structure of the Pearl (2009)

approach to causality, as described in Zhao and Hastie (2021)
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– PDP provides a summary statistic about the distribution of results for

the following experiment: “take an observation and plug it into the model

and get a prediction. Change nothing else about this observation except

for a single characteristic. What changes about the model output? What

if we did this with many observations?”. This type of field experiment

has been done in experimental economics, for example as in Bertrand and

Mullainathan (2004) and others, and may be intuitive for a wide range of

audiences.

• Variance: by using more information PDP appears to be less variable, which

appears in both the visual noise of the function and in tighter confidence bands,

both of which can aid interpretation

The question of whether to use ALE or PDP is essentially a question of which

tradeoffs to choose: slower PDP calculation with a traditional ceteris paribus inter-

pretation and lower-variance output, or faster ALE calculation with a somewhat less

tradition interpretation and higher variance in the marginal relationship.

We have coded up both a bootstrapped version of PDP and ALE, and compare the

results of both PDP and ALE for the hedonic house pricing exercise in the appendix.

Aside from higher variance in the ALE estimates, we find that both the PDP and

ALE approaches perform similarly.

2.5 Additional Generalizations of Marginal Relationships

The structure of ALE and PDP calculation suggest that there are in fact a small

number of estimators of the slopes of the marginal relationship of interest, which may

have different advantages either theoretically or in practice. We suggest a few here

but otherwise simply note these for future work.

For example, one potential extension of ALE, not pursued in our current paper, is

to apply the “derivate first, then integrate” reasoning of ALE to the conditional PDP

described earlier. This would combine the “full information” benefit of PDP with

the “local information” benefit of ALE, and may produce a smoother, more intuitive

descriptive statistic. We suggest “conditional local effects” (CLE) as a descriptive
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name. Under such a setup the ICE lines and ŷ points would still be useful and

appropriate to display to potentially further aiding interpretation.

A simpler extension would be to use the “derivate first, then integrate” reasoning

of ALE with the marginal distribution of PDP, resulting in something like a “partial

local effects” (PLE) model which retains the ceteris paribus reasoning of PDP as well

as some of the controls for correlations between variables that Apley and Zhu (2020)

note is an advantage of the “derivate first” approach of ALE.

In fact, we can describe several different estimators for the marginal effect as a

profile of three distinct choices:

1. Order of operation of calculating expected slope: (1) integrate then derivate:
∂E[f̂(.)]
∂x

(k)
i

, vs (2) derivate then integrate: E
[
∂f̂(.)

∂x
(k)
i

]
2. Using the (1) marginal distribution vs (2) conditional distribution for the expec-

tation (using 1
N

vs conditional kernel-density-based weights for the expectation

over ICE lines vs slopes), and

3. Using (1) global or (2) local data to form the expectation (eg. kernel density

vs local sample).

.

PDP is {1, 1, 1} while ALE is {2, 2, 2}. The cPDP suggested above is {1, 2, 1},
m-plots as described in Apley and Zhu (ibid.) (not discussed here) are {1, 2, 2}, the

“conditional local effects” (CLE) suggested above would be {2, 2, 1}, and the “partial

local effects” (PLE) would be {2, 1, 1}. Other permutations are possible but may

not yield much practical advantage. There are likely tradeoffs between how quickly

these converge under the bootstrap, how variable they are, and how efficiently these

can be calculated taking advantage of computational tricks (for example, using kernel

density estimates to accelerate calculation).

Future research should examine the speed, variance, and convergence properties

of the different estimators of marginal slope described above. In particular, it is im-

portant to understand how quickly bootstrapping converges for the different methods

listed here. The method that converges with the nicest properties (for example, in

24



the higher-order moments of the bootstrapped distributions) will allow for the most

efficient bootstrapping estimate of of confidence intervals around the marginal slope

relationships.

3 Shapley Values

While PDP and ALE provide useful insights into the marginal effect of a feature –

the change in model prediction as x
(k)
i increases or decreases, they do not provide

as much insight about the more general questions such as whether a feature should

be included in the model in the first place, or which features are most important

to a model’s prediction. We can, however, answer these types of questions with

Shapley values (Shapley, 1953; Štrumbelj and Kononenko, 2014) and we can extend

our understanding by combining Shapley values PDP and bootstrapping.

The Shapley value ψkf(x
(k)
i ) ≡ ψkf(x

(k)
i , x

(¬k)
i ) is the marginal contribution of a

variable, k, to a model’s prediction, f(xi), for a particular observation, i averaged

over all possible combinations with covariates in xi. Write the demeaned PDP of

f(x(l) = q) as ν̃(x(l) = q) = Ex(¬l) [f(q, x(¬l)) − Ex[f(x)]], then we can write the

Shapley value of x
(k)
i as

ψkf(xi) =
1

K

∑
s⊆x¬k

i

(
K − 1

|s|

)−1(
ν̃(x

(k)
i ∪ s)− ν̃(s)

)
. (11)

Where s is a subset of covariates at values observed in x¬ki and K is the total

number of variables. The Shapley decomposition of a model’s output, Ψ(f(xi)) =

{ψ1f(xi), . . . ψKf(xi)}, is a linear decomposition that can be described as an additive

feature attribution(Lundberg and Lee, 2017) of f i.e.
∑

k ψkf(x
(k)
i ) = f(xi)−E[f(x)].

This property of the Shapley decomposition makes interpretation straightforward;

ψkf(x
(k)
i ) tells us the gain18 in model output on observation i from including vari-

able k at its value for observation i, marginalized over its inclusion with all possible

combinations of covariates as observed for observation i.

18This gain is expressed relative to E[f(x)] allowing for comparison between different models.
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To better understand the intuition and interpretation of the Shapley value, con-

sider a linear model, f(x) = xB. OLS estimates of B provide a summary interpreta-

tion of the effect of x on f(x). That is, βk = ∂f(x)

∂x(k)
tells us about the overall effect of

x(k) on f(x) regardless of its observed value. By contrast, ψkf(x
(k)
i ) incorporates the

value of xi directly19. In the linear model case20, ψkf(x
(k)
i ) = (x

(k)
i − E[x(k)])βk.

In non-parametric models and machine learning models specifically, models are

much more complex than linear models and generally explore various nonlinearities

in the data. In these circumstances, the effect of x
(k)
i on f(x

(k)
i ) is not necessarily

independent of x
(¬k)
i . By producing the average contribution of including x

(k)
i over

all possible combinations of observed covariates in x
(¬k)
i , Shapley values resolve the

attribution of the effect of x
(k)
i on f(x

(k)
i ) in a way that is ‘fair’21. As a consequence

however, ψkf(x
(k)
i ) is dependent on the specific covariate profile x

(¬k)
i .

We can gain a more general understanding of the effect of including x(k) in the

model by marginalizing out the influence of the covariate profile, i.e. by calculating

Ex(¬k) [ψkf(x
(k)
i )|x(k)i ]. We can estimate this quantity as SPDPk(x) = ν(ψkf(x))

and we can produce bootstrap estimates of SPDPk(x) by applying the following

algorithm:

Note that the quantities contained in Z̃ are just a normalized version of the quan-

tities in Z, which gives us the Shapley feature importance partial dependency plot

(SFIPDP). The SFIPDP values can be plotted against quantiles of k to give a sense

of how much influence k would have at a specific value and how likely it would be to

actually observe such a value.

19i.e. |q − E[x(k)]| > |p− E[x(k)]| then |ψkf(q, x(¬k))| > |ψkf(p, x(¬k))|, assuming f is linear.
20see Appendix C for discussion
21The properties of fairness are discussed in Young (1985). Crucially, for a decomposition to fairly

describe feature attribution, it must be accurate (i.e. the sum of feature attributions must sum

to the model output) and it must exhibit coalitional monotonicity whereby if f(x
(k)
i ) − E[f(x)] ≥

g(x
(k)
i ) − E[f(x)] then ψkf(x

(k)
i ) ≥ ψkg(x

(k)
i ). See discussion in Lundberg and Lee (2017) for

application of fairness to feature attributions specifically and in which the authors establish that the
only linear decomposition approaches to feature attribution that can be described as fair are those
that are derived from Shapley values.
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Algorithm 2 Estimate SPDP and SFIPDP

Preallocate output matrix Z with dimensions (J ×B)
Preallocate output matrix Z̃ with dimensions (J ×B)

Allocate vector Q as a J-length vector of equally spaced values from
[
x
(k)
low, x

(k)
high

]
for for b in 1 to B: do:

xb, yb =bootstrap(x)
Estimate fb s.t. ŷb = fb(xb)
for for j in [1,J]: do

q = Qj

Z
(b)
j = 1

N

∑
i ψkf(q, x

(¬k)
bi )

Z̃
(b)
j = 1

N

∑
i

|ψkf(q,x
(¬k)
bi )|∑

h∈{k,¬k} |ψhf(x
(h)
bi )|

Return Z as SPDP, and Z̃ as SFIPDP

3.1 Illustrating SPDP and SFIPDP via Simulation

To help better understand the intuition behind SPDP and SFIPDP, we return to the

simulated data discussed earlier. To begin, recall our initial dataset simulated from

a simple linear DGP, y = xB + u and with coefficients B = (1,−2, 10, 0). Using

the OLS model discussed in section 2.2 we can apply Algorithm 2 to generate SPDP

and SFIPDP bootstrap estimates22. Figure 7 shows the SPDP and SFIPDP for x(1)

and x(4). Recall from the previous section that ψkf(x
(k)
i ) = (x

(k)
i − E[x])β when f

is linear. Accordingly, the SPDP for the variables shown in figure 7 are linear and

exhibit slopes that are effectively 1 and 0 (equivalent to the OLS coefficient estimates).

This is similar to the special case presented when the PDP is taken of an OLS model

as in Section 2.1. For a model that is not a simple linear combination of covariates,

however, this special case does not hold and SPDP is not necessarily equivalent to

the demeaned PDP.

Figure 8 shows the SPDP and SFIPDP for the GBM model estimated on the

simulated data from the linear DGP. As with the PDP, the SPDP is generally con-

sistent with the OLS model – it portrays the marginal effect of including a variable

as linear in the value of that variable and adhering, roughly, to the slope equiva-

22Though it is possible to generate Ψk(f(xi)) for this simulated dataset by directly implementing
equation 11, it is computationally costly to do so and the computational cost of generating Ψk(f(xi))
grows exponentially in the number of features. Accordingly, and throughout the rest of this paper,
we estimate Ψk(f(xi)) using methods described in Lundberg and Lee (2017).
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lent to the corresponding OLS parameter estimate. As with the PDP, the SPDP is

considerably less smooth for GBM than OLS, but this is attributable largely to the

binary-choice nature of the decision trees that comprise the GBM. We can observe a

similar correspondence between SFIPDP for the GBM and OLS models.

Figure 7: SPDP and SFIPDP values for OLS model on linear simulated data
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SPDP remains useful and intuitive to interpret when applied to more complex

situations. Recall the nonlinear DGP discussed above where y = (x(1))2γ + XB + u

with B = (0, 5,−5, ε+, ε−), γ = 10, and with (ε+, ε−) being positive and negative
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values near zero. We estimate SPDP and SFIPDP for an OLS model specified to

explicitly account for the nonlinearity in the DGP. Figure 9 shows the SPDP and

SFIPDP for x(1), which has no effect in the DGP, its nonlinear transformation, which

has a large effect, and an unrelated variable, and x(5), which has a trivial effect on

the DGP. As just discussed, we can interpret the SPDP we would the demeaned PDP

since they are equivalent for linear models.

The SPDP and SFIPDP for the GBM model are estimated and shown in Figure

10. Unlike the OLS model, the GBM model is capable of learning the nonlinear

relationship between y and x(1) without the nonlinearity being explicitly specified.

Thus, while the SPDP of x(1) for the OLS model shows no marginal effect from

including (the untransformed value of) x(1), the SPDP of x(1) for the GBM model

portrays the substantial, nonlinear effect of including x(1) that is learned by the model.

Under the circumstances of this exercise, where variables are largely independent

of one another and our models are setup to estimate E[y|x], then the SFIPDP (x(k))

will tend towards a local minimum as g(x(k))→ E[g(x(k))], where g is the representa-

tion of the data learned by the model. In the case of the OLS model, g(x(k)) = x(k),

and thus SFIPDP (x(k)) approaches its lowest point as x(k) → E[x(k)] = 0. The

SFIPDP results for the GBM model are similar, except with regard to x(1). Because

the GBM model implicitly learns g(x(1)) ≈ (x(1))2, SFIPDP (x(1)) for the GBM

model approaches its lowest values as g(x(1))→ E[g(x(1))] = 1. When plotted against

x(k), then, SFIPDP (x(k)) approaches its lowest as x(k) → g−1(E[g(x(k))]) = ±1.
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Figure 8: SPDP and SFIPDP estimates from GBM model on linear simulated data
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Figure 9: SPDP and SFIPDP estimates from OLS model on nonlinear simulated
data
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Figure 10: SPDP and SFIPDP estimates from GBM model on nonlinear simulated
data
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4 Applied Exercise: Ames Housing Data

To concretely illustrate the PDP, SPDP, and SFIPDP methods discussed in sections

2 and 3 we apply them to a hedonic house pricing model exercise run on tax assessor

data. The data, described in De Cock (2011), is comprised of houses sold from 2006

through 2010 in Ames, Iowa. The data contains approximately 3000 observations with

models spanning roughly 90 different variables, including square footage, number of

beds and baths, number of fireplaces, neighborhood and amenities information.

Our hedonic model measures the response of the log of house prices to the most

included dependent variables across the two meta-studies on hedonic house pricing,

Sirmans, Macpherson, and Zietz (2005) and Zietz, Zietz, and Sirmans (2008).

Table 2: Model Specification

Target Input Features Additional Controls
Log(sale price) Square Footage Neighborhood

Age Sale Condition
Lot Area Central Air
Garage Area Condition 1
Bathrooms
Bedrooms
Bathrooms:Bedrooms
Fireplaces
Time Trend

The estimated model, for both OLS and the ML models23, is presented in Table

2. In this discussion, we will focus on the results from five models. The simplest

model is a linear model estimated via OLS. Two of the models are ensemble models

based on decision-trees: Random Forest (RF) and Gradient Boosting Regression

(GBR). These ensemble models are notable in that they essentially learn complex

piecewise functions to fit the data. By contrast, the other two models we will discuss,

Support Vector Regression (SVR) and Deep Neural Networks (DNN) learn ‘smooth’,

continuous functions that fit the data. We will further discuss the difference between

the smooth and non-smooth models shortly.

23Machine learning models have been widely explored for house pricing models. However, these
studies either focus on the accuracy of the ML model (Limsombunchai, 2004; McCluskey et al., 2013,
See) or focus on model-specific interpretation of less-complex ML type models (See, for example,
Čeh et al., 2018; McMillen and Redfearn, 2010).
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Generally, each of the five models performed well. In-sample and out of sample

R2 scores are presented in Table 3. The linear model exhibits inferior fit to the

other models while the Random Forest model exhibits near perfect fit. The difference

between the linear model and the ML models is less striking with regard to out of

sample fit (R2 measured via 10-fold cross-validation), where the OLS model performs

better than the DNN and only slightly worse than other models.

Table 3: OLS and ML model performance

OLS GBR RF SVR DNN
R2 0.847 0.897 0.979 0.914 0.887
CV R2 0.837 0.842 0.841 0.839 0.808

4.1 PDP of Linear Model and OLS Estimates

Turning to the OLS model results, we can interpret the effect of each of the variables

in Table 2 by examining the OLS coefficient estimates. These are presented in Table

4. As with the exercise in section 2.2, we can also recover these estimates from

the PDP. The PDP based coefficient estimates are presented in the second column

of Table 4 along with bootstrap estimates of the standard error. The PDP-based

coefficient estimates are equal to the OLS based estimates (to machine precision) and

the corresponding estimates of standard errors are only slightly different.

The OLS estimates show effects that are generally consistent with findings doc-

umented in the meta analyses in Sirmans, Macpherson, and Zietz (2005) and Zietz,

Zietz, and Sirmans (2008). That is, it finds square footage, lot size, number of bath-

rooms, garage area and number of fireplaces as statistically significant with a positive

effect on house price while Age is statistically significant with a negative effect. The

time trend is not estimated to be statistically significant, which fits with the mixed

findings regarding the time trend in Sirmans, Macpherson, and Zietz (2005). The

total effect of bedrooms is estimated as negative as long as the home has at least 1

bathroom, but not necessarily always statistically significant. This is likewise consis-

tent with the mixed findings in Sirmans, Macpherson, and Zietz (ibid.).
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Table 4: OLS and PDP-derived model
estimates

OLS ∆ PDP
Square Footage 0.168* 0.168*

(0.007) (0.005)
Age -0.073* -0.073*

(0.009) (0.009)
Lot Area 0.018* 0.018*

(0.005) (0.006)
Bedrooms 0.012 0.012

(0.009) (0.008)
Bathrooms 0.058* 0.058*

(0.012) (0.012)
Bed x Bath -0.043* -0.043*

(0.015) (0.014)
Garage Area 0.043* 0.043*

(0.006) (0.006)
Fireplaces 0.038* 0.038*

(0.004) (0.003)
Time Trend -0.001 -0.001

(0.003) (0.003)
Adj. R2 0.845 0.845
N 2874 2874

Robust standard errors presented in parentheses
for OLS model. Bootstrap estimated standard
errors presented for ∆ PDP model.

4.2 ML Models and PDPs

Turning to the ML models, recall that the nonlinear nature of the ML models makes

it difficult to present the marginal effects of the ML models in tabular form. Instead,

we turn to an examination of the PDP for these models. Figures 11 and 12 provide

a comparison of the PDP of the linear model to the smooth (SVM, DNN) and non-

smooth (GBM, RF) models for select variables24. These figures show distinct non-

linear effects for each of the variables shown. Notably, for a number of the variables,

we see diminishing effects for a number of variables as they approach values far outside

of the mean.

24See the appendix for the PDP of other variables
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For age in particular, the PDP suggests substantial differences in the nature of

the relationship captured from one model to the next. As a reference point, the linear

model portrays a constant negative effect whereby a house’s sale price declines at a

consistent rate as it ages25. The RF and GBM models pictured in Figure 12 however,

suggest that this effect is not constant; the PDP shows steep declines in house price

each year for its first 30 or so years. After that, however, the effect of age tapers

substantially. For the SVM (pictured in Figure 11), the relationship suggests that

age has a consistent negative effect on the price of a house for about its first 50 years

but this effect then wanes and even reverses course as the age of the house increases

past 100 years. A similar nonlinearity is revealed for lot size. Whereas the PDP of

the linear model portrays a constant, weak effect, the PDP of ML models suggest a

strong effect for lot sizes at or below the mean (about 10000 square feet, or 1/4 of an

acre).

25This nonlinearity in the effect of age on house price is well known. See Goodman and Thibodeau
(1995). Our purpose in discussing it here is to highlight (1) that the ML models account for
the nonlinearity without prior specification and (2) that PDPs allow us to depict the nonlinear
relationship that the ML models have learned.
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Figure 11: PDP of linear model and smooth ML models
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Figure 12: PDP of linear model and non-smooth ML models
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Figure 13: SVM PDP-Differenced Visual Regression Table
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If we look at the PDP in first-differences, the nonlinearities are placed in higher

relief. Figure 15 shows the PDP in first differences for the linear, SVM and DNN

models for selected variables. If we look at Figure 11, the effect of age on house price

for the DNN appears linear. If, however, we examine the first differences as shown in

Figure 15, we see that the effect of age tapers gradually over its entire range. If we

consider the bootstrapped confidence intervals, the effect becomes indistinguishable

from zero for houses older than about 80 years. These first difference plots similarly

reveal slight but discernable nonlinearities for lot area and total square footage. These

first difference plots are useful for interpreting the SVM as well. For example, they

more clearly suggest, when taking the bootstrapped confidence intervals into account,

that the effect of lot area goes to zero as a lot exceeds about 15,000 square feet.

However, for tree-based models the PDP-difference slope is likely not the best

tool due to the fact that they yield piecewise, ‘non-smooth’, model functions. Figure

16 shows the PDP in first differences for the linear, RF, and GBM models. We

can see that these plots are rather volatile; non-zero effects are only observed in the

differences between points that straddle ‘jumps’ in the piecewise model function26.

The first-difference of the PDP can be made more legible by evaluating it on fewer

points over the range of the input variable, but this comes with the risk of imprecision

in interpretation. Instead, for tree based models, it may be somewhat preferable to

interpret the PDP directly.

4.3 Feature importance and marginal effect of inclusion via

SPDP and SFIPDP

Recall that SPDP and SFIPDP are complimentary measures to PDP. In general, the

PDP values can be interpreted as β-coefficient estimates in the spirit of statistical

regression pedagogy. That is, we can think of the PDP as telling us about the effect

of a variable as it increases or decreases and taking as a given that the variable will

be included in the model. The SPDP is subtly different in that it tells us about the

expected effect of including a variable in a model at a given value. The SFIPDP is

26To think of this another way, consider that tree-based methods will produce the same prediction
for two observations that are sufficiently close together in the input feature space. As such, the PDP
will be the same for two values that are sufficiently close together and thus produce a first-difference
of zero
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Figure 14: OLS PDP-Differenced Visual Regression Table
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Figure 15: PDP First Differences for smooth models (SVM, DNN)

more distinct from the PDP and can be thought of as a measure of feature importance.

As such, the SFIPDP enables us to compare input features to one another in terms

of their overall impact on model output.

Figures 17 and 17 plot SPDP and SFIPDP results for Total Square Feet, Year

Built, and Lot Area as constructed for OLS, SVR, and GBM modelling approaches.

As discussed in Section 3, the SPDP for the linear model is linear with a slope equal

to the estimated OLS coefficients.

For the SVM model, the nonlinearities are less pronounced for some variables

(square footage and age) but are more readily apparent for others (lot area). It is
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Figure 16: PDP First Differences for non-smooth models (GBM, RF)

also notable that for age, the SPDP of the SVM model is nearly flat and close to

zero. This suggests that the inclusion of age has a relatively limited impact on the

model output. The corresponding panel from Figure 18 supports this, showing that,

on average, the inclusion of age in the SVM model accounts for between 5% and 10%

of the model output27.

For the GBM model, the SPDP follow the same general direction of the linear

model, but are nonlinear, reflecting the nonlinearities captured by these models. Un-

27It is additionally notable that both the SPDP and SFIPDP for the SVM exhibit rather wide
bootstrap confidence intervals (for age and other variables, when compared to OLS and GBM mod-
els). This suggests sensitivity to the composition of the training data that might otherwise be
corrected through more careful hyperparameter tuning.
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like the SVM model, the SPDP of age for the GBM model in figure 17 is quite sizable.

Here, the the inclusion of the age of a home variable will, on average, reduce the es-

timated price by about 20% for houses more than 80 years old. For houses under 30

years old, however, the inclusion of the age variable would, on average increase the

estimated home price, with the size of the effect increasing sharply, resulting in an av-

erage increase of the estimated log price by approximately 30% for the newest homes.

In terms of relative importance, the GBM model appears to place more weight on the

age variable than the SVM model. This is highlighted in Figure 18 where we can see

the SFIPDP of the age variable for the GBM model accounts for as much as 50% of

the model output28

5 Conclusion

This paper has explored the use of model-agnostic tools to aid in the interpretation

of machine learning models in a way that is familiar to our interpretation of stan-

dard econometric models. It identifies PDPs as a viable route towards understanding

the magnitude of effect and provides extensions to shapley values to understand the

general impact of including a variable on a model’s output. Further, it demonstrates

that PDPs, Shapley Values, and SPDP, all replicate the OLS point estimate (β) in

the linear case and that, for the PDP in particular, the nonparametric bootstrap

produces variances in those point estimates comparable to OLS standard errors. Un-

derstanding these tools in the linear context, we expect that researchers will feel

more comfortable using them to interpreting ML models in the future. The hedonic

house-pricing exercise demonstrates such an application and shows that ML models

can both replicate the results of meta-analysis of the literature, and add new insights

about non-linear behavior of variables in the house-pricing models.

Despite the promise of PDPs, shapley values and the SPDP, their use in inter-

preting ’black-box’ models is not without caveats. Perhaps most crucially, these

techniques require nuanced interpretation where interactions between variables are

concerned. Indeed a crucial avenue for further development will be the extension of

these techniques to more fully illustrate interactions captured by a model.

28There is a notable decline in the SFIPDP as the age variable approaches the average age of
homes in the dataset. As discussed in Section 3, this is expected behavior for the SFIPDP.
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Abdi, Hervé (2004). “Partial regression coefficients”. Encyclopedia of social sciences

research methods, pp. 1–4.

Apley, Daniel W and Jingyu Zhu (2020). “Visualizing the effects of predictor variables

in black box supervised learning models”. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 82.4, pp. 1059–1086.

Athey, Susan and Guido W Imbens (2019). “Machine learning methods that economists

should know about”. Annual Review of Economics 11, pp. 685–725.

Bertrand, Marianne and Sendhil Mullainathan (2004). “Are Emily and Greg more

employable than Lakisha and Jamal? A field experiment on labor market discrim-

ination”. American economic review 94.4, pp. 991–1013.

Breiman, Leo (2001). “Statistical modeling: The two cultures”. Statistical science

16.3, pp. 199–231.
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Figure 17: SPDP for Linear, SVM and GBM models for selected variables

Linear

SVM

GBM

47



Figure 18: SFIPDP for Linear, SVM and GBM models for selected variables
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A Nonlinear DGP Simulation OLS Fit

Table 5: Parameter estimates on simulated dataset from nonlinear DGP

Dep. Variable: y R-squared (uncentered): 0.999
Model: OLS Adj. R-squared (uncentered): 0.998
No. Observations: 3000 AIC: 6379.
Df Residuals: 2994 BIC: 6416.
Df Model: 6

coef std err z P> |z| [0.025 0.975]

x(1) -0.0050 0.013 -0.378 0.706 -0.031 0.021
x(2) 4.9937 0.013 384.767 0.000 4.968 5.019
x(3) -4.9939 0.013 -378.003 0.000 -5.020 -4.968
x(4) 0.0484 0.012 3.965 0.000 0.024 0.072
x(5) -0.1209 0.013 -9.503 0.000 -0.146 -0.096
(x(1))2 10.0002 0.008 1273.826 0.000 9.985 10.016

Omnibus: 0.113 Durbin-Watson: 2.008
Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.117
Skew: -0.015 Prob(JB): 0.943
Kurtosis: 2.994 Cond. No. 1.71

B PDP Plots for Housing Exercise
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Figure 19: PDP for GBM model
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Figure 20: PDP for RF model
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Figure 21: PDP for SVM model
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Figure 22: PDP for OLS model
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Figure 23: PDP for DNN model
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B.1 Differenced PDP Plots

Figure 24: Differenced PDP for Linear Model
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Figure 25: Differenced PDP for SVM
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B.2 Additional SPDP and SFIPDP Results
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Figure 26: SPDP results for SVM model
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Figure 27: SFIPDP results for SVM model

59



Figure 28: SPDP results for GBM model
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Figure 29: SFIPDP results for GBM model
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Figure 30: SPDP results for Linear model
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Figure 31: SFIPDP results for Linear model
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C Claims about PDP, SPDP in linear models

The PDP of a function f is written νk(f(xk = q)) ≡ νk(q) = Ex¬k
[f(q, x¬k)|q] =∫

x¬k
f(q, x¬k)P(x¬k)dx¬k.

Claim 1: νk(q) = qβk + E(X¬k)β¬k if f is linear and ∂νk/∂q = βk.

Proof: If f is linear, it can be written as XB =
∑

j xjβj. Accordingly, we can

write f(q) as qβk +X¬kβ¬k and

νk(q) = E[qβk +X¬kβ¬k|q]

= qβk + E[X¬k]β¬k

From this it follows that ∂νk/∂q = βk �

Write the de-meaned PDF as ν̃k = Ex¬k
[f(q, x¬k)− Ex[f(x)]|q]

Claim 2: If f is linear, then ∂ν̃k(q)/∂q = βk

Proof: If f is linear, then we can write

ν̃k(q) = qβk + Ex¬k
[x¬kβ¬k]− Exk [xk]− Ex¬k

[x¬k]β¬k

= (q − Exk [xk])βk.

From this it follows ∂ν̃k(q)/∂q = βk �

Claim 3: If f is linear, then ψkf(q) = (q − Exk [f(xk)])βk

Proof: Recall that we write the shapley value as

ψkf(q) =
1

K

∑
s⊂S(x)\k

(
K

|s|

)−1
ν̃k(q ∪ s)− ν̃k(s)

From the proof of Claim 2, it follows that if f is linear,
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νek(q ∪ s)− νek(s) = (q − Exk [xk])βk − (s− E[xs])βs − (s− Exs [xs])βs
= (q − Exk [xk])βk ∀s ⊂ S(x)

Further, denote S(x, i) as the set of all subsets of covariates in x of size i, then we

can write

ψkf(q) =
1

K

K∑
i

(Es⊂S(x,i)\k[q]− E[xk])βk

= (q − E[xk])βk�
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