Challenges to the Concept Of Stock Market Efficiency

By Douglas K. Pearce

Stock prices have risen about 75 percent since the end of 1984. The tremendous surge in the average price of stocks has been accompanied by large daily fluctuations and historically high trading volumes. Not surprisingly, such activity has spurred new interest in the question of what underlies these movements in stock prices. In particular, are stock price movements quick and appropriate responses to new information about economic conditions? This question is often phrased: Is the stock market efficient? Despite some apparent anomalies, this article concludes that the preponderance of evidence supports the view that the stock market is efficient.

The issue of the efficiency of the stock market has significant consequences for the economy. Since stock price movements affect the cost of financing capital expansion and give managers of firms a direct evaluation of their performance, stock prices are thought to be important signals for the efficient allocation of a country’s savings. Faith in the appropriateness of signals from the stock market is based on the belief that stock prices reflect the well-informed opinions of investors about the future profitability of businesses. As economist William Baumol has stated:

If security prices were divorced from earnings potential, the stock market could not be expected to serve as an effective disciplinary force capable of pressing management to maintain the efficiency of company operations.¹

The belief that stock prices depend on investors’ expectations of profits is generally referred to as the “fundamental model” or “intrinsic value model” of stock prices. According to this model, stock prices equal the present or discounted value of future dividends.

The concept of stock market “efficiency” is also used in a different but related context.

¹ Baumol (1965), p. 36. For the full citation for this book and other studies cited in this article, see the list of references at the end of the article.

Douglas K. Pearce is an associate professor of economics and business at North Carolina State University. The views expressed in this article are those of the author and do not necessarily reflect the views of the Federal Reserve Bank of Kansas City or the Federal Reserve System.
According to the “efficient markets” theory of stock prices, stock prices accurately reflect all information that is available about the future profitability of firms. When new information comes available, stock prices rapidly adjust to their new equilibrium levels. The basic implication of this model is that investors cannot use available information to generate expected returns in excess of a normal return on the risk they bear. It might be said that the efficient markets model is simply another version of the economic rule that there are no free lunches.

Many observers of the stock market scoff at the notion that the stock market is efficient. They argue that stock price movements reflect short-run speculative waves of optimism or pessimism that, at best, are weakly tied to forecasts of profits. The stock market is likened to a gambling parlor and stock price changes to the outcomes from a roulette wheel. These commentators often quote Keynes’ famous remark that “when the capital development of a country becomes a by-product of the activities of a casino, the job is likely to be ill-done.” When the stock market is volatile, this argument is raised to support the need for an industrial policy in which the government plays a larger role in allocating capital.

Skepticism about the efficiency of the stock market has been bolstered by several recent challenges to the empirical validity of the efficient markets model. These challenges are of two kinds. First, some researchers report instances in which stock returns do not behave according to the predictions of the efficient markets theory because investors can use available information to earn “excess” profits. Second, other researchers argue that stock price movements are much too volatile to be compatible with the efficient markets model. It has even been suggested that if “excess volatility” characterizes stock prices, the Federal Reserve should reduce volatility through open market operations in the stock market.3

This article reviews these recent challenges to the efficiency of the stock market. The first section reviews the fundamental model of stock prices and its relationship to the efficient markets model. The second section discusses the empirical implications of the efficient markets model and examines evidence that stock returns do not conform with these implications. The third section analyzes recent research on whether stock price fluctuations are excessively volatile.

The efficient markets model of stock prices

The fundamental or traditional model of stock prices starts with the assumption that stock prices depend on the anticipated profits of firms. The efficient markets model makes additional assumptions about what information investors use in forming their expectations.

The fundamental model of stock prices

The fundamental model of stock prices asserts that the price of a share of stock equals the present or discounted value of all expected dividends.4

4 The fundamental model is expressed formally as:

$$ P_t = \frac{E(D_1)}{1+\delta} + \frac{E(D_2)}{(1+\delta)^2} + \ldots + \frac{E(D_n)}{(1+\delta)^n} $$

where \(P_t \) is the current share price, \(E(D_i) \) is the dividend per share expected to be paid at time \(t \), \(\delta \) is the rate of discount, and \(n \) is the number of periods into the future the stock is assumed to exist. The rate of discount can be thought of as the expected rate of return since \(\delta \) can be expressed as:

$$ \delta = \frac{E(P_t) - P_t}{P_t} + \frac{E(D_1)}{P_t} $$

Thus, \(\delta \) is the expected capital gain (the first term) plus the expected dividend yield (the second term).
If this model is correct, stock prices change only if investors revise their expectations of future dividends or revise the rate at which they discount these dividends.

The rate that investors use to discount future dividends is the expected rate of return they require to be satisfied in holding that stock. It is usually assumed that investors are risk averse, which means that investors require a higher expected return for riskier stocks. Risk, however, is not simply the amount of variation in the stock’s return. The Capital Asset Pricing Model (CAPM) is generally used in determining the expected rate of return. According to this model, investors realize that some of the risk of a stock can be eliminated by holding a diversified portfolio. Stock returns are assumed to change because of two kinds of shocks or unexpected events. The first kind of shock is specific to the individual stock. Each firm will be hit by a certain amount of random disturbance—luck that produces unexpectedly high returns or unexpectedly low returns. Investors can avoid this firm specific risk, however, by holding a portfolio of stocks so that good and bad luck averages out. The CAPM argues that investors will not be rewarded for bearing such firm specific, or unsystematic, risk.

The second kind of shock affecting stock returns can be thought of as economywide. Thus, to some extent, it is common to all stocks. An unexpected economic downturn, for example, is likely to depress the returns on most stocks. The uncertainty arising from these kinds of shocks is called systematic or undiversifiable risk because investors cannot eliminate this uncertainty by holding a portfolio of stocks. The CAPM states that the expected return on an individual stock depends on how sensitive the return is to such economywide shocks. A stock with a return that is expected to vary more than the average is considered riskier than average. As a result, its expected return should be higher. A stock with a return that varies less than the average is considered less risky. And as a result, its expected return should be less. The extent to which the return on a stock varies with the return on the stock market as a whole is called its beta. A beta higher than one indicates that the return on the stock has varied more than the market. A beta less than one indicates that the return on the stock has varied less than the market. The larger the beta, the riskier the stock and the higher its expected return should be. Thus, stock return data should show a positive relationship between a stock’s beta and its average rate of return. The CAPM goes further by arguing that no other factor except beta need be considered in explaining the individual behavior of expected stock returns. This last assumption is critically important in tests of market efficiency because the usual measure of excess or abnormal returns is the difference between actual returns and the returns predicted by this model. If the CAPM is an inadequate model of expected returns, these tests could lead to incorrect inferences about market efficiency, since returns for bearing more risk might be mistaken for excess returns.

Information and efficiency

The fundamental model along with the CAPM predicts that stock prices and returns depend on investors’ expectations of future profits of firms and the amount of undiversifiable risk attached to their expectations. The efficient markets model makes the additional assumption that investors are well-informed and that their expectations of future dividends are “rational.” According to this

5 For a derivation of the CAPM, see chapter 7 of Copeland and Weston (1983). The formal statement of the CAPM is:

\[E(R_i - R_f) = \beta E(R_m - R_f) \]

where \(R_i \) = return on i-th stock in period t
\(R_f \) = return on a risk-free asset in period t
\(R_m \) = return on the market portfolio of stocks in period t
\(\beta \) = Covariance \((R_i, R_m) \) / Variance \((R_m) \).
assumption, investors make the best forecasts of dividends that can be made from the available information. If some news changes these expectations, investors are assumed to bid the stock price up or down very quickly to its new equilibrium.

It is customary to distinguish between three types of stock market efficiency. One, the stock market is said to be "weak-form" efficient if there is no pattern in past stock prices or stock returns that would allow investors to earn above-normal returns. Next, the market is said to be "semistrong-form" efficient if investors cannot use publicly available information to make above-normal profits. And three, the market is said to be "strong-form" efficient if no information can be used to make above-normal profits.

Empirical implications and evidence of market efficiency

Several strong empirical implications follow from the efficient markets model. Weak-form efficiency implies that there should be no discernible pattern to changes in stock prices and thus stock returns. Since only news causes prices to change and since news by definition means new, unforeseen information, stock returns should not be predictable from past returns. If, for example, an increase in stock prices of 1 percent today was likely to be followed by a further increase, investors would bid up the price today rather than wait. Charts of past price movements should be of no help in predicting subsequent changes. Stock prices should follow what is called a "random walk" in which the best guess of tomorrow's price is today's price.

Semistrong-form efficiency implies that not just past stock prices but any information that is publicly available should be uncorrelated with subsequent movements in stock prices. As soon as news is announced, prices will move to reflect completely the impact that investors expect the news to have on the future profitability of businesses. If, for example, the government announced a new tax policy that was not expected, the stock market would react immediately and not over several days. Announcements of policies that had been fully anticipated should have no effect on stock prices. Thus, if Congress has debated a tax bill and investors know its provisions and that it will be passed, the actual passage will have no impact. Profit announcements by corporations will have an effect only if the announcement differs from expectations. Thus, a corporation may announce higher profits and see its stock price go down if investors view the announced profits as unexpectedly low.

Strong-form efficiency implies that no information, public or private, should help in predicting stock returns. The public information referred to in semi-strong efficiency can be thought of as essentially costless to investors. Private information is often equated with "insider" information—information that is known only to individuals with some connection with the company in question. Private information is assumed to be costly to collect or process. It has been pointed out, however, that if stock prices are to reflect rise over time by enough to provide the expected return. For example, if a stock pays no dividends and investors require a 10 percent annual rate of return to hold the stock, the stock price would be expected to rise an average of 0.026 percent per day. In this case, the efficient markets model predicts that the natural logarithm of the stock price follows a "random walk with drift." This means that the first difference of the logarithm of the stock price, which measures the rate of return, is a constant (0.026 percent) plus a random error term. The best guess of the rate of return is simply the constant or drift term (0.026 percent) because there is no systematic pattern in past returns.
all information, someone has to bear the costs of collecting and evaluating private information. If there was no expected return to this activity, investors who incurred the costs of assembling the information would be at a disadvantage to "uninformed" investors and would stop gathering information. How, then, could stock prices reflect all information? Thus, strong-form efficiency is usually modified to say that the returns to using private, costly information are just enough for investors to earn a normal rate of profit on their information expenditures.

Tests of market efficiency generally look for evidence that investors could have earned excess returns by following some systematic pattern of buying or selling. Such "trading rules" should not exist if the stock market is efficient. A strategy of simply buying and holding stocks should yield higher average returns when the transactions costs of buying and selling are taken into account. Evidence generally supports weak and semistrong forms of efficiency but is more mixed with regard to strong-form efficiency.

Weak-form efficiency

Tests of weak-form efficiency restrict the trading rules to those based on past changes in stock prices. If there were any patterns, or serial correlation, in stock price changes, then investors could base their buying and selling on such patterns. Stock returns would be positively serially correlated, for example, if news was only slowly reflected in prices. Positive (negative) news would then cause prices to rise (fall) over several days so that a rise (fall) today would likely be followed by a rise (fall) tomorrow. Returns would be negatively serially correlated if the stock market overreacted to news so that a rise (fall) in price today would likely be followed by a fall (rise) tomorrow. The efficient markets model asserts that any such pattern would be quickly recognized by the horde of financial analysts hunting for such regularities and their buying and selling would eliminate the pattern.

Empirical studies have generally found support for weak-form efficiency. One way to assess the degree of serial correlation in stock returns is to estimate the relationship between current and past returns. If there is no statistically significant relationship, weak-form efficiency would be supported. Table 1 presents estimates of this relationship for daily and monthly returns on two measures of stock returns. One measure, VWT, is the rate of return on a portfolio of all stocks on the New York Stock Exchange and American Stock Exchange in which the return on each stock is value weighted by the size of the company. The other measure, EWT, is the rate of return on the same portfolio but with each stock being equally weighted. Hence VWT is dominated by larger firms while EWT is dominated by smaller firms.

The estimates in Table 1 indicate that for daily returns from 1966 to 1985 there is some evidence of serial correlation, although the fraction of variation in stock returns that can be explained by past variation (the R^2's) is small. That the EWT series shows more serial correlation may be due to the less frequent trading of smaller stocks rather than to serial correlation in individual stock returns. If some stocks do not trade every day, the response of a portfolio of such stocks to any news may be spread over several days. Given the transactions costs of buying or selling daily, the small degree of serial correlation would be unlikely to allow investors to earn

* For a discussion of this issue, see Grossman and Stiglitz (1980).

9 Support for weak-form efficiency is given in Fama (1970) and Berkman (1978).

10 See Roll (1981) for a discussion of the possible effects of nonsynchronous trading. Atchison et al. (1987), however, suggest that this cannot explain all the serial correlation.
TABLE 1
Tests of weak-form efficiency

<table>
<thead>
<tr>
<th>Return Series</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
<th>R^2</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily VWT 1966-85</td>
<td>0.245*</td>
<td>-0.046*</td>
<td>0.027</td>
<td>-0.003</td>
<td>0.006</td>
<td>0.057</td>
<td>60.97*</td>
</tr>
<tr>
<td>Daily EWT 1966-85</td>
<td>0.411*</td>
<td>-0.089*</td>
<td>0.095*</td>
<td>0.018</td>
<td>0.043</td>
<td>0.169</td>
<td>204.06*</td>
</tr>
<tr>
<td>Monthly VWT 1956-85</td>
<td>0.056</td>
<td>-0.050</td>
<td>0.030</td>
<td>0.081</td>
<td>0.087</td>
<td>0.022</td>
<td>1.59</td>
</tr>
<tr>
<td>Monthly EWT 1956-85</td>
<td>0.131*</td>
<td>-0.040</td>
<td>0.005</td>
<td>0.040</td>
<td>0.050</td>
<td>0.023</td>
<td>1.66</td>
</tr>
</tbody>
</table>

Notes: *indicates statistical significance at the 5 percent level.
F statistic is for the hypothesis that all the coefficients are jointly equal to zero.
VWT = value-weighted index of stock returns.
EWT = equally weighted index of stock returns.
Data are from the Center for Research in Security Prices at the Graduate School of Business, University of Chicago.

excess returns. The estimates for monthly data from 1956 to 1985 show no serial correlation for the VWT over that period and very slight serial correlation for the EWT series. Again, the amount of variation in monthly returns accounted for by past returns is small. When five-year subperiods are examined, the degree of serial correlation falls over time for both weekly and monthly data, indicating that the market has become more efficient.\(^{11}\)

More sophisticated trading rules using past stock returns, usually called filter rules, look for such strategies as buying when stocks have risen by x percent and selling when they have fallen by y percent. Studies investigating such rules usually find that when transactions costs are taken into account the rules do not produce returns in excess of a buy-and-hold strategy.\(^{12}\)

Several empirical papers have focused on two apparent anomalies to weak-form efficiency. One is referred to as the “weekend” effect. Researchers report that average stock returns have been lower on Mondays and higher on Fridays than on other days of the week. This difference is an anomaly, since the efficient markets model cannot account for this systematic effect. The model would predict, if anything, that returns should be higher on Mondays because Monday’s return is for three days rather than for one. Part of the weekend effect may be due to the settlement practices of financial markets. When stocks are bought or sold, transactors have five business days to settle. Combined with a one-day check clearing delay, this practice produces higher returns on

\(^{11}\) For the VWT daily stock returns, the coefficient on the first lagged return is 0.359 for 1966-70 and falls to 0.136 for 1981-85. For the EWT series, the coefficient falls from 0.467 to 0.290 for these subperiods. A similar pattern occurs in the monthly return series for ten-year subperiods.

\(^{12}\) See Fama and Blume (1966).
TABLE 2
Tests of the weekend effect

\[
\text{Model: } r_t = c_0 + c_1\text{TUE}_t + c_2\text{WED}_t + c_3\text{THUR}_t + c_4\text{FRI}_t
\]

<table>
<thead>
<tr>
<th>Return Series</th>
<th>(c_0)</th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(c_4)</th>
<th>(R^2)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily VWT 1966-85</td>
<td>-0.111*</td>
<td>0.131*</td>
<td>0.214*</td>
<td>0.172*</td>
<td>0.219*</td>
<td>0.066</td>
<td>14.74*</td>
</tr>
<tr>
<td>Daily EWT 1966-85</td>
<td>-0.121*</td>
<td>0.113*</td>
<td>0.255*</td>
<td>0.241*</td>
<td>0.350*</td>
<td>0.184</td>
<td>44.14*</td>
</tr>
</tbody>
</table>

Notes: All coefficients are multiplied by 100.
- * indicates statistical significance at the 5 percent level.
- \(F\) statistic is for the hypothesis that all days have the same average return.
- Equations estimated by generalized least squares to correct for serial correlation.
- \(\text{TUE}_t = 1\) if day \(t\) is a Tuesday, \(= 0\) otherwise and so on.

Fridays and lower returns on Mondays to compensate for the extra two days of interest accruing to buyers of stock on Friday.\(^{13}\)

The presence of a pattern in daily stock returns can be investigated by estimating a model that allows the average stock return to depend on the day of the week. Table 2 reports estimates of such a model using VWT and EWT from 1966 to 1985. The constant term estimates the average return on Mondays, and its significantly negative values are evidence of low Monday returns. The positive coefficients for the other days of the week indicate that their mean returns are higher than that for Monday. Only for the EWT series, however, is there evidence of high returns on Fridays, casting some doubt on the settlement practices explanation. There is also evidence that the daily pattern of stock returns has weakened in recent years.\(^{14}\)

The other anomaly is the "January" effect. Researchers find the return on holding stocks over January averages higher than for other months. This finding is often ascribed to investors selling stocks in December to realize capital losses for tax purposes and then rebuying stocks in January. Such a practice would lower stock prices in December and raise them in January so that calculated returns over January would be high. However, several problems with this explanation have been raised. Studies have shown that it is not optimal to wait until December to realize capital losses.\(^{15}\) Moreover, the January effect appears to have existed before the imposition of income taxes in the United States.\(^{16}\)

\(^{13}\) French (1980) and Gibbons and Hess (1981) document the existence of the weekend effect. The settlement practices explanation is given in Lakonishok and Levi (1982), and criticized by Dyl and Martin (1985).

\(^{14}\) For the VWT series, re-estimating the model over five-year subperiods indicates that the weekend effect disappears after 1975. For the EWT series, the effect remains but becomes less significant.

\(^{15}\) See Constantinides (1984) for a discussion of the issues.

\(^{16}\) See Jones et al. (1987).
The existence of the January effect can be examined by estimating a model that allows the average monthly stock return to depend on the month of the year. Table 3 reports estimates of such a model for the two return series from 1956 to 1985. The constant term in the model estimates the average return for January and the coefficients on the other variables estimate how the average returns in the other months differ from January’s. If there is a January effect, the coefficients for the other months should be negative. For the VWT series, the coefficients on the monthly variables are individually and jointly equal to zero, which rejects the presence of a January effect. For the EWT series, however, all the non-January coefficients are negative and, with one exception, statistically different from zero, which indicates that returns average higher in January than other months. Since the EWT series gives more weight to small firms than does the VWT series, these results are consistent with other studies that find the January effect to be concentrated in the returns of small stocks. While the finding of high returns in January supports the tax selling argument, there is no evidence that December returns are abnormally low, contrary to the prediction of the tax selling theory. Splitting the sample into ten-year subperiods produced evidence that the January effect appears to have been reduced over time.17

In summary, the evidence suggests that weak-form efficiency is a reasonable characterization of historical stock returns. While there is some evidence of serial correlation in daily stock returns, it is of little value in predicting future returns. Similarly, although low returns on Mondays and high returns in January contradict weak-form efficiency, these deviations appear to be concentrated in the returns of small firms and to have declined over time.

\textit{Semistrong-form efficiency}

Most studies support semistrong-form efficiency, but as with weak-form efficiency, there are some anomalous findings. Researchers have

\begin{table}[h]
\centering
\caption{Tests of the January effect}
\begin{tabular}{lrr}
\hline
 & \text{VWT 1956-85} & \text{EWT 1956-85} \\
\hline
\text{Model: } r_t = d_0 + d_1 \text{February}_t + d_2 \text{March}_t \\
&& + d_3 \text{April}_t + d_4 \text{May}_t + d_5 \text{June}_t + d_6 \text{July}_t \\
&& + d_7 \text{August}_t + d_8 \text{September}_t + d_9 \text{October}_t \\
&& + d_{10} \text{November}_t + d_{11} \text{December}_t \\
\hline
d_0 & 0.014 & 0.046* \\
d_1 & -0.012 & -0.041* \\
d_2 & -0.001 & -0.030* \\
d_3 & 0.001 & -0.034* \\
d_4 & -0.016 & -0.049* \\
d_5 & -0.012 & -0.046* \\
d_6 & -0.007 & -0.036* \\
d_7 & -0.002 & -0.033* \\
d_8 & -0.020 & -0.049* \\
d_9 & -0.002 & -0.044* \\
d_{10} & 0.011 & -0.019 \\
d_{11} & 0.001 & -0.033* \\
R^2 & 0.042 & 0.067 \\
F & 1.37 & 2.29* \\
\hline
\end{tabular}
\end{table}

Notes: * indicates statistical significance at the 5 percent level.

F statistic is for the hypothesis that all months have the same average return.

February, = 1 if month t is February, = 0 otherwise and so on.

17 Over the period from 1976 to 1985, neither measure of stock returns exhibited a statistically significant January effect.
tested semistrong efficiency in the stock market mainly in two ways. One way is by seeing if trading rules based on publicly available information about the firms or the economy yield excess returns to investors. The other way, an “event” study, is by looking at the reaction of stock prices to announcements thought to be relevant to stock prices.

A trading rule is a decision rule that tells an investor when to buy or sell stock or which stocks to buy or sell. The first kind of trading rule uses economywide information to come up with the appropriate times to buy or sell. A trading rule would be profitable if it yielded higher returns, after considering transactions costs, than a buy-and-hold strategy. Several early studies asserted, for example, that investors could make abnormal profits by using a trading rule based on past movements in the money supply. The efficient markets hypothesis argues that no such trading rule exists because only contemporaneous, unexpected changes in the money supply could affect stock returns. Subsequent work has found evidence that knowledge of past money supply changes would not have allowed investors to earn abnormal profits.\(^\text{18}\)

One test of whether money supply growth can be used to predict stock returns is to estimate the relationship between stock returns and past money growth rates. If the stock market is semistrong-form efficient, there should be no statistically significant association between stock returns and past money supply movements. Table 4 reports estimates of this relationship from 1966 to 1985 for both a narrow definition of money (M1) and a broader definition of money (M2). For neither money supply measure is there evidence of a systematic relationship between past money growth and stock returns. These results do not imply, however, that there is no relationship between money growth and stock returns. If the current month’s rate of growth of the money supply is included, there is evidence of a significantly positive relationship between contemporaneous money growth and stock returns as indicated in the last two columns of Table 4. This relationship does not allow investors to predict stock returns, however, because they do not know the current month’s money growth.\(^\text{19}\)

A second kind of trading rule is based on publicly available information about individual firms or groups of firms. Again, the efficient markets model asserts that no such trading rule can be used to make abnormal profits. Recent studies, however, have provided several apparent exceptions to this rule. One exception is referred to as the small firm effect. Several researchers have documented that smaller firms have consistently earned higher returns than larger firms. In addition, these abnormal returns are concentrated in January returns. One interpretation of these findings is that smaller firms are riskier, and hence should earn a higher average return than the CAPM predicts. According to this interpretation, the CAPM inadequately adjusts for risk. While this explanation is a plausible reason for smaller stocks earning higher average returns, it does not account for the excess returns being concentrated in January.\(^\text{20}\)

\(^{19}\) Care should be exercised in interpreting these results. The contemporaneous relationship could reflect feedback from the financial market to the money supply. In addition, the use of actual changes in the money supply in the model given in Table 4 reflects an implicit assumption that investors cannot accurately predict money growth.

TABLE 4
Stock returns and money supply growth, 1966-85

Model: \(r_t = g_0 + g_1 M_t + g_2 M_{t-1} + \ldots + g_{12} M_{t-12} \)

<table>
<thead>
<tr>
<th></th>
<th>Money Supply Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M2</td>
</tr>
<tr>
<td>(g_0)</td>
<td>0.012</td>
</tr>
<tr>
<td>(g_1)</td>
<td></td>
</tr>
<tr>
<td>(g_2)</td>
<td>0.102</td>
</tr>
<tr>
<td>(g_3)</td>
<td>-0.077</td>
</tr>
<tr>
<td>(g_4)</td>
<td>0.410</td>
</tr>
<tr>
<td>(g_5)</td>
<td>0.248</td>
</tr>
<tr>
<td>(g_6)</td>
<td>0.019</td>
</tr>
<tr>
<td>(g_7)</td>
<td>-1.260*</td>
</tr>
<tr>
<td>(g_8)</td>
<td>-0.319</td>
</tr>
<tr>
<td>(g_9)</td>
<td>0.441</td>
</tr>
<tr>
<td>(g_{10})</td>
<td>0.014</td>
</tr>
<tr>
<td>(g_{11})</td>
<td>0.330</td>
</tr>
<tr>
<td>(g_{12})</td>
<td>-0.880</td>
</tr>
<tr>
<td>(g_{13})</td>
<td>-0.506</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.051</td>
</tr>
<tr>
<td>(F)</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Notes: * indicates statistical significance at the 5 percent level.

Stock returns measured by the percentage change in the New York Stock Exchange's index. \(M_{t-1} \) is the rate of growth in M in month t-1. All data are from the Citibase data bank.

\(F \) statistics are for the joint hypothesis that all coefficients are zero.

Higher January returns are consistent with the tax selling hypothesis. If smaller firms have more variable prices, these firms are more likely to have capital losses and, hence, their stocks are more likely to be sold at the end of the year to qualify for tax losses. Another interpretation is that there are higher transactions costs in buying or selling small stocks and that when these costs are taken into account the excess returns disappear. Again, however, this leaves the question of why the trans-
actions costs are higher in January.21

A similarly puzzling empirical regularity is the finding that stocks with low (high) price-earnings ratios earn average returns above (below) what the CAPM would predict. This anomalous result appears to occur even after other factors, such as the size of the firm and the effects of taxation, are taken into account. Since last period's price-earnings ratio is public information, excess returns on portfolios chosen by picking stocks with low price-earnings ratios violate semistrong-form efficiency. Moreover, such a finding implies that investors overreact to news about a firm's earnings, being either too optimistic and bidding the price-earnings ratio too high or too pessimistic and causing the price-earnings ratio to fall too far.22

Still another puzzle is the "Value Line" anomaly. Semistrong-form efficiency implies that investment advice based on publicly available information should be worthless. The Value Line Investment Survey, the largest advisory firm in the United States, uses public information to rank stocks by expected returns. Thus, semistrong-form efficiency predicts that investors should not benefit from the Value Line recommendations. Several studies have documented, however, that investors following the Value Line recommendations would have earned abnormally high returns.23

The second method of testing market efficiency uses event studies to examine the responses of stock prices to announcements thought to be relevant to stock returns. Semistrong-form efficiency is supported if stock prices react only to the unexpected part of any announcement and react quickly. Most event studies find that the stock market conforms reasonably well to semistrong-form efficiency. One famous study investigated the responses of stock prices to announcements of stock splits. Stock prices are expected to rise after stock splits are announced because splits are usually reliable predictors of higher dividends. The study found this reaction was essentially immediate.24 Support for semistrong-form efficiency has also come from studies of how the aggregate stock market reacts to announcements concerning monetary policy. Stock prices were found to respond quickly to the unexpected parts of weekly money supply reports and announcements of changes in the discount rate.25

The evidence from event studies is not unanimous, however, in support of the efficient markets model. Some studies have found evidence of stock price reactions to public announcements that last more than one day. Studies of the reaction of stock prices to earnings announcements of firms also have found responses which are spread over time rather than occurring immediately.26

21 The transactions cost explanation is discussed in Stoll and Whaley (1983). For evidence that transactions costs do not fully account for the small firm effect, see Schultz (1983).

22 Basu (1977, 1983) and Dowen and Bauman (1986) conclude that the price-earnings ratio has an independent effect on returns, while Reinganum (1981) argues that it is only firm size that matters. Evidence that stock prices overreact to news was reported by DeBondt and Thaler (1985). This study found that portfolios of stocks which were "losers" in the recent past subsequently earned substantially higher returns than portfolios of past "winners" over a three-year period. Contrary to the tax-loss selling hypothesis for high January returns, they report that the "loser" portfolios had high returns in January every year and not just the first year.

23 Studies of the Value Line anomaly include Copeland and Mayer (1982), Holloway (1981), and Stekel (1985). These studies suggest that transactions costs incurred in frequent trading could eliminate the abnormally high returns.

24 See Fama et al. (1969).

25 See Pearce and Roley (1985) and Smirlock and Yawitz (1985).

26 Slow responses to unexpected earnings announcements were found by Rendleman et al. (1982). Adjustments to stock analysts' recommendations published in the Wall Street Journal were found by Lloyd-Davies and Canes (1978) to persist beyond the first day.
Strong-form efficiency

Strong-form efficiency asserts that even investors with information that is not publicly available cannot earn abnormal returns. Researchers have tested for strong-form efficiency two ways, by examining the returns to insider trading and by evaluating the performance of mutual fund managers. These tests provide mixed results.

The evidence from studies of insider trading does not support the strong form of the efficient markets model. Legal insider trading consists of the buying or selling of a company's stock by an officer or director of the company. Such trading is legal as long as it is not motivated by specific news about the company's prospects that has not been announced to the public. Insider trading must be registered with the Securities and Exchange Commission and, therefore, is known to researchers. Studies that have examined the returns to legal insider trading have generally concluded that insiders make abnormal profits and, hence, that the stock market is not strong-form efficient. Moreover, it appears that a trading strategy based on the publicly announced insider trading activity can also earn abnormal profits, a finding that contradicts even semistrong-form efficiency.27

In contrast, tests that focus on the investment performance of mutual fund managers tend to support the strong form of the efficient markets model. These tests assume that fund managers are more likely to have access to private information or are better able to access the effects of information on stock returns. Thus, if certain funds consistently earn abnormal returns, that is, after accounting for the level of risk, this would be evidence against strong-form efficiency. However, studies comparing fund performance indicate no such violations of strong-form efficiency.28

In short, the evidence on market efficiency does not lend strong support for strong-form efficiency. The evidence, however, does tend to support weak-form and semistrong-form efficiency, which means that stock prices appear to reflect publicly available information but not all information.

Are stock prices too volatile?

Even without strong evidence that publicly available information can be used by investors to earn abnormal returns, this lack of evidence does not confirm that the efficient markets model explains the movements in stock prices. An alternative test of this model, proposed by Robert Shiller, examines whether the model can account for the historical variability of stock prices.29 Applying this test to the history of stock prices in the United States, Shiller concludes that stock prices have been much more volatile than the fundamental model would predict. He argues that fads and mass psychology play an important role in the stock market. While this strong assertion has stimulated a lively and continuing literature, recent work suggests that the efficient markets model can account for the volatility of stock prices.

Shiller's argument runs as follows. Suppose investors had perfect foresight so that they could predict dividends without error. According to the fundamental model, the price investors would be willing to pay for a stock would be the present value of the known future dividends. Assuming

27 Baesel and Stein (1979), Finnerty (1976), Givoly and Palmon (1985), and Lorrie and Niederhoffer (1968) report evidence that insiders earned abnormally high returns.

the rate at which investors discount future dividends is constant, Shiller constructs a series of stock prices, P^*, that would have resulted under the assumption of perfect foresight. The efficient markets model does not assume that investors have perfect foresight, but rather that they make the best possible predictions based on the available information. If the discount rate investors use is constant, the model implies that actual stock prices, P_i, are the optimal forecasts that investors can make with their limited information of the perfect foresight prices. Shiller notes that optimal forecasts of economic variables should vary less than the variables themselves. He concludes from this that the actual variance of stock prices should be less than the estimated variance of the perfect foresight series he constructs. This condition is referred to as a "variance bounds restriction."30

Shiller tested this variance bounds restriction by constructing a measure of P^*, and comparing its variability with the actual stock price series, P_i. He used a constant discount rate, actual dividends, and an assumption about the terminal stock price to compute the present value of actual dividends, after first deflating by the producer price index and eliminating trends. The startling result of this exercise is given in Chart 1. The dashed line is the constructed P^* series, and the solid line is the actual stock price series, P_i. As the chart illustrates, the P^* series is much smoother than the P_i series. From this, Shiller concluded that stock prices vary too much to be the present value of expected dividends.

30 See appendix for details on Shiller's approach.
Shiller's results have created considerable controversy, with several well-known economists referring to his results as evidence that the stock market is not likely to allocate capital efficiently. In addition, because stock price fluctuations have substantial effects on the economy, such excess volatility suggests to some that the Federal Reserve should smooth these excessive swings through open market operations in equities as well as short-term government securities.

Several researchers, however, have challenged the approach of Shiller. One exception taken to his approach is that the comparison of variances is inappropriate because it ignores the information available to investors. According to the efficient markets model, the current stock price is the present value of the best forecast of future dividends that can be made from current information. The appropriate comparison is between this forecast and any other forecast based on the same information. Since the variance of P_t depends on all actual future dividends whereas the variance of P^*_t depends only on information known at time t, there is no reason to conclude that Shiller's variance bounds test contradicts the efficient markets model. Indeed, one researcher has shown that figures such as Chart 1 can result even when the efficient markets model holds by construction. The intuition behind this finding is that when dividends change in, say, period t, investors change their forecasts of all future dividends. If dividend changes tend to persist, an increase in dividends would increase the predicted dividends for many periods into the future. Thus, the present value of these dividends, and hence P_t, may increase substantially. P^*_t, however, is based on the known future dividends and can only rise by enough to produce a return equal to the assumed constant discount rate. Hence P_t will appear much more volatile than P^*_t.

Related to this objection to Shiller's approach is work suggesting that dividends should not be treated as exogenous but rather as a choice made by managers of firms. Models of aggregate dividends that assume managers try to keep dividends payments smooth appear to fit the historical pattern of dividends quite well. If managers smooth dividends rather than let dividends vary proportionately with profits, the observed dividends will vary little, and stock prices will appear much more volatile than the present value of the observed dividends.

A third objection to Shiller's variance bounds test is the assumption of a constant discount rate. If the discount rate changes substantially over time, stock prices could vary considerably, even if expected changes in dividends were small. If investors are risk averse, the rate of return they require to hold stocks will vary with the state of the economy. When incomes are high, investors are likely to save more and to accept a lower return. When incomes are low, investors would tend to sell their stocks to maintain their consumption and the required rate of return would have to rise. Thus, stock prices would be boosted by falling discount rates in good times and depressed by rising discount rates in bad times. The more risk averse investors are the more variation in discount rates. While Shiller and others suggest that this variation is insufficient to account for the

31 See, for example, Arrow (1982), pp. 1-9; Ackley (1983).
33 For a detailed discussion of these issues, see Kleidon (1986). A summary of problems with volatility tests is given by LeRoy (1984).
34 See Marsh and Merton (1986, 1987). Much of the discussion about the dividend process centers on the question of whether the aggregate dividend series is nonstationary or whether it is stationary about a trend as assumed by Shiller.
volatility of stock prices, other work gives more support to this factor.35

The question of whether the historical volatility of stock prices is inconsistent with the efficient markets model is still an open question. While several objections have been raised to the original tests, which indicated excessive volatility, new tests that do not suffer from these drawbacks have also found evidence against the rational expectations, present value model.36 It appears, however, that the assumptions of relatively smooth dividends and a fluctuating expected rate of return allow the efficient markets model to account for the apparent excess volatility of stock prices.

Summary and conclusions

For stock prices to serve as signals that lead to the efficient allocation of capital, they need to reflect the best forecasts of the future profitability of firms. According to the efficient markets model of stock price determination, this condition is met. Investors are assumed to use all available information in predicting stock prices, which implies that stock prices quickly reflect any relevant news. Investors should expect to earn only a normal rate of return for the risk they bear.

Challenges to this notion of stock market efficiency have often been raised in the spirit of Keynes. Critics see stock prices as strongly influenced by changes in mass psychology in addition to news about future profits. Recent empirical challenges have taken two forms. First, studies have pointed out anomalies to the efficient markets model in which investors appear able to earn excess returns based on the use of available information. Second, recent work on the volatility of stock prices has claimed that this volatility cannot be explained by the efficient markets model.

After reviewing many studies on these two challenges, this article concludes that the evidence against the efficient markets model is not sufficient to reject the model. When transactions costs are taken into account, many of the apparent deviations from the predictions of the efficient markets model are too small to allow investors to earn excess returns. Moreover, these deviations are concentrated in the behavior of the stock prices of small firms, which suggests that the standard model of expected returns may not be adequate for small firms. Studies of excess volatility, while initially accepted as startling evidence against the efficient markets model, have been found to be flawed. More recent work suggests that the evidence of excess volatility is suspect and that the efficient markets model can account for the historical variability of stock prices.

35 Allowing for a variable discount rate was found to be insufficient to account for the variation in stock prices in Grossman and Shiller (1981) and Shiller (June 1981). For a model allowing for an endogenously determined discount rate that is relatively successful in explaining stock returns, see Litzenberger and Ronn (1986). For discussions of the connection between risk aversion and the variable discount rates, see LeRoy and La Civita (1981) and Michener (1982).

36 See Mankiw et al. (1985) and Scott (1985). While these tests appear insensitive to the issue of nonstationary dividend processes, they do assume a constant discount rate.
Appendix

Shiller’s Volatility Test

The perfect foresight stock price, P_{*i}, is defined as

\begin{equation}
(1) \quad P_{*i} = \sum_{i=1}^{n} d^i D_{t+i}
\end{equation}

where \(d = (1/(1+\delta))\)

\(\delta = \text{discount rate (assumed constant)}\)

\(D_t = \text{dividends paid in period } t\).

The actual stock price, P_t, according to the fundamental model, is:

\begin{equation}
(2) \quad P_t = \sum_{i=1}^{n} d^i D^*_t D_{t+i}
\end{equation}

where $D^*_t = \text{expected dividends for period } t$.

Assuming a constant discount rate, P_t is a forecast of P_{*i}, so that

\begin{equation}
(3) \quad P_{*i} = P_t + e_t
\end{equation}

where $e_t = \text{forecast error}$.

Under the efficient markets model, P_t is the optimal forecast of P_{*i}, which implies that e_t must be uncorrelated with P_t. Thus, taking variances of Equation 3,

\begin{equation}
(4) \quad \text{var}(P_{*i}) = \text{var}(P_t) + \text{var}(e_t)
\end{equation}

Since variances must always be positive, Equation 4 implies that the variance of the perfect foresight price, P_{*i}, must exceed the variance of the actual price, P_t. This is the “variance bounds” restriction Shiller tests.

Shiller constructs P_{*i} recursively. Let P_{*t} be the terminal price at the end of the data set. P_{*t-1} can then be calculated as follows:

\[P_{*t-1} = (P_{*t} + D_t) d \]

That is, P_{*t-1} is the present value of the one-period-ahead price plus the one-period-ahead dividends. This calculation is then repeated recursively to obtain the entire series graphed in Chart 1. Following Shiller, the actual stock price series (the Standard & Poor’s Composite) and the dividend series were deflated by the Wholesale Price Index and detrended. The discount rate was set at the ratio of average real, detrended dividends to average real, detrended price, which equaled 5.17 percent over 1926-85. The stock price and dividend data are from Security Price Index Record, Standard & Poor’s Statistical Service, 1986.

References

