Reserve Requirements and Monetary Control

By J.A. Cacy

The Federal Reserve System requires that its member banks hold a minimum volume of reserves, either as vault cash or on deposit at Federal Reserve Banks. The required minimum is equal to certain percentages of various types of deposits that the public maintains at member banks. These percentages—established by the Board of Governors of the Federal Reserve System—are referred to as reserve requirements.

Reserve requirements are one of the instruments the Federal Reserve uses in controlling the money supply. In recent years, however, the precise role that requirements play in monetary control has been a subject of some controversy. Some observers have claimed that requirements are necessary if the monetary authorities are to effectively carry out their responsibility of controlling the nation's money supply. Other observers argue that requirements are not needed. Disagreement also exists concerning the coverage and structure of reserve requirements. Many observers hold that effective monetary control requires that nonmember banks as well as nonbank financial institutions be subject to reserve requirements. This contention is disputed by those who claim that an extension of reserve requirements beyond member banks is not needed for effective monetary control. With regard to the structure of reserve requirements, some observers argue that requirements should be applied uniformly on all types of deposits, while others favor the current system of nonuniform requirements.

In this article the role that reserve requirements play in monetary control is analyzed. The article also discusses the impact on monetary control that would result from an extension of reserve requirements to nonmember banks and nonbank financial institutions. The first section of the article provides a background by discussing the sources of monetary control as well as the factors that tend to weaken monetary control.

SOURCES OF MONETARY CONTROL

The money supply is importantly influenced by Federal Reserve actions such as open market operations and changes in reserve requirements. The money supply also is affected by factors that are not under the control of the monetary authorities. For this reason, monetary control is imprecise in that the Federal Reserve can seldom establish the money supply at precisely the level the System considers desirable. Monetary control would be precise if changes in the noncontrollable factors
and their impact on money were predictable. In this case, the Federal Reserve could take offsetting action. However, the impact of the noncontrollable factors is not entirely predictable. Thus, while the Federal Reserve exercises a degree of control over the nation's money supply, monetary control is made imprecise by the existence and unpredictability of noncontrollable factors.

Controllable Factors

The Federal Reserve exercises a degree of control over the nation's money supply for several reasons. One reason is that the System can maintain fairly precise control over the nation's monetary base, and the base affects the money supply. The Federal Reserve can control the monetary base because the base consists primarily of the deposit and currency liabilities of Federal Reserve Banks. The System controls these liabilities by controlling its assets. For example, when the Federal Reserve brings about a net increase in its assets—by buying U.S. Government securities or making loans to banks—the increase in assets is typically accompanied by an increase in the System's deposit or currency liabilities that constitute the monetary base.

The monetary base affects the money supply because base money, if held by the public as currency, is a part of the money supply. Moreover, base money not held by the public as currency flows into commercial banks and other depository institutions and provides these institutions with reserves. Therefore, increases or decreases in the monetary base tend to add to or subtract from the reserves of the financial system. With higher or lower reserves, financial institutions tend to acquire larger or smaller portfolios of loans and investments, thereby creating a larger or smaller money supply. The money supply then is positively related to and partly determined by the monetary base. For example, when the Federal Reserve buys U.S. Government securities to increase the monetary base, the rise in the base tends to increase bank reserves. The increase in reserves tends to result in an increase in the money supply.

Another factor providing the Federal Reserve some control over money is the System's authority to establish and alter reserve requirements on deposits at member banks. Reserve requirements contribute to monetary control in two ways. First, changes in reserve requirements tend to produce changes in the money supply. For example, a reduction in requirements will increase the excess reserves of the banking system and thereby tend to result in a rise in the money supply. Second, the level and structure of requirements affect the magnitude of the impact on money of noncontrollable factors. This second aspect of the role of reserve requirements is discussed in detail later.

Noncontrollable Factors

There are a number of noncontrollable factors that affect the money supply and tend to weaken monetary control. One is shifts in the composition of deposits. Compositional shifts affect the money supply because such shifts affect the required reserves ratio, which in turn affects the money supply. The required reserves ratio, or simply the r-ratio, is defined as the amount of reserves that financial institutions are required to hold as a per cent of the deposit component of the money supply. An example of a compositional shift that

1 Various concepts of the monetary base have been used. The concept used in this article is sometimes referred to as the “source base.” It is defined as deposits of private financial institutions (mainly member banks) at Federal Reserve Banks plus Federal Reserve and Treasury currency held by financial institutions and the public.

2 The deposit component of the money supply depends on the definition of money. For the narrowly defined money supply, M1, the deposit component consists of demand deposits at commercial banks other than interbank and U.S. Government deposits. For the M2 definition of money, the deposit component consists of the deposit component of M1 plus time and savings deposits at commercial banks other than large negotiable CDs. For M3, the deposit component consists of the deposit component of M2 plus deposits at savings and loan associations, mutual savings banks, and credit unions. Theoretically, deposits of these nonbank institutions at commercial banks should be excluded from the deposit component of M3.
affects the r-ratio is a shift out of demand deposits at member banks and into demand deposits at nonmember banks. Since nonmember bank deposits are not subject to reserve requirements set by the Federal Reserve, this shift will reduce required reserves and, therefore, reduce the r-ratio.

The required reserves ratio affects the money supply by influencing the volume of resources that banks allocate to idle balances. In this way, the r-ratio affects the volume of loans and investments that banks hold, which in turn influences the money supply. For example, if the r-ratio is high, banks will be required to maintain relatively large idle balances. Therefore, the volume of loans and investments that banks can acquire will be small. In turn, the small volume of loans and investments will tend to produce a low money supply. The money supply then is inversely related to the r-ratio. Thus, shifts in the composition of deposits that cause the r-ratio to decline—such as shifts out of demand deposits at member banks and into demand deposits at nonmember banks—will cause the money supply to increase. By the same token, shifts that cause the r-ratio to increase will lead to a decline in the money supply.

An additional noncontrollable factor that affects the money supply is the excess reserves ratio, or the e-ratio. The e-ratio is the volume of excess reserves held by financial institutions as a per cent of the deposit component of the money supply. Excess reserves are reserves held in excess of required reserves. The e-ratio affects the money supply in the same manner as the r-ratio. That is, a high e-ratio means that financial institutions maintain large idle balances and low portfolios of loans and investments. Thus, the money supply is inversely related to and partly determined by the e-ratio.

A third noncontrollable factor affecting the money supply is the currency ratio, or c-ratio. This ratio is defined as the amount of currency held by the public as a per cent of the money supply. The c-ratio influences the money supply because it affects the total reserves financial institutions have available. That is, if the c-ratio is high, publicly held currency will be high and the amount of base money that is available for reserves will be low. Thus, the money supply is inversely related to and partly determined by the c-ratio. For example, suppose the c-ratio is 25 per cent and the money supply is $250 billion, so that the volume of currency held by the public is $62.5 billion. Now suppose the public wishes to increase its c-ratio to 30 per cent. Since the public now wishes to hold $75 billion rather than $62.5 billion in currency, the public will increase its currency and decrease its deposits by $12.5 billion. The decline in deposits will result in a decline in bank reserves. Banks will respond to the decline in their reserves by reducing their holdings of loans and investments, which in turn will result in a further decline in deposits and in a drop in the money supply. Thus, an increase in the c-ratio will tend to result in a decline in the money supply.

Determinants of the Money Supply

In summary, the money supply is affected by the monetary base and the r-, e-, and c-ratios. The precise relationship between the money supply and its determinants may be stated as a formula: 5

\[M = \frac{B}{r + e + c (1 \cdot e \cdot r)} \]

Determinants of the Money Supply

In summary, the money supply is affected by the monetary base and the r-, e-, and c-ratios. The precise relationship between the money supply and its determinants may be stated as a formula: 5

\[M = \frac{B}{r + e + c (1 \cdot e \cdot r)} \]

4 Currency held by the public consists of currency outside commercial banks (other than any currency held by U.S. governmental agencies). For M3, currency held by the public should theoretically exclude currency held by nonbank financial institutions.

5 The formula is general and holds for any definition of money. A particular formula may be derived for each definition.
Reserve Requirements and Monetary Control

The letters in the formula are defined as follows:

- \(M \) = money supply.
- \(B \) = monetary base.
- \(r \) = \(r \)-ratio = required reserves as a per cent of the deposit component of the money supply.
- \(e \) = \(e \)-ratio = excess reserves as a per cent of the deposit component of the money supply.
- \(c \) = \(c \)-ratio = currency held by the public as a per cent of the money supply.

That part of the formula containing the three ratios is known as the money multiplier, which may be represented by the letter \(m \). Then, \(m = \frac{1}{r + e + c(1 - e - r)} \) and \(M = Bm \). For example, suppose the \(r \)-ratio is .15, the \(e \)-ratio is .05, and the \(c \)-ratio is .25. In this case, the value of the multiplier is 2.5 and the money supply is equal to 2.5 times the base. That is:

\[
M = Bm = B \frac{1}{r + e + c(1 - e - r)}
\]

\[
= B \frac{1}{.15 + .05 + .25(1 - .05 - .15)} = B (2.5).
\]

The formula for the money supply may be used to illustrate the extent that the Federal Reserve can control money as well as the way that noncontrollable factors weaken monetary control. Suppose the multiplier is 2.5 during some month and the Federal Reserve wants the money supply to equal 250 in the following month. If the three ratios do not change, the Federal Reserve can completely control money by taking action to establish the base at 100, so that \(M = Bm = 100(2.5) = 250 \).

Even if the ratios change, the Federal Reserve can completely control money if the changes in the ratios can be predicted. For example, suppose the \(c \)-ratio increased to .30. The rise in the \(c \)-ratio will reduce the multiplier to 2.27 and tend to reduce the money supply below 250. If the increase in the \(c \)-ratio can be predicted, though, the monetary base can be increased above 100 precisely enough to offset the impact of the rise in the \(c \)-ratio. The base would need to equal 110, so that \(M = Bm = 110(2.27) = 250 \). However, to the extent that the change in the \(c \)-ratio cannot be predicted, the Federal Reserve cannot determine the precise level of the monetary base that will result in the money supply being equal to 250.

The degree of precision, then, in the Federal Reserve's control over money depends on the magnitude of unpredictable changes in the noncontrollable factors and the extent that such changes affect the money supply. The extent that money is affected by changes in noncontrollable factors depends partly on the level and structure of reserve requirements.

THE LEVEL OF RESERVE REQUIREMENTS AND MONETARY CONTROL

The level and structure of reserve requirements, then, affects the Federal Reserve's ability to control the money supply. The level of requirements refers to the general level of requirements on all types of deposits, while structure refers to the relative levels of requirements on different types of deposits. Monetary control is affected by the level of requirements because, in the first instance, requirements help determine the size of the \(r \)-ratio. That is, high or low requirements produce a high or low \(r \)-ratio. Secondly, the \(r \)-ratio's size affects the impact on money of changes in the noncontrollable currency ratio and excess reserves ratio. Alterations in these ratios lead to small changes in money when the \(r \)-ratio is high and to large changes in money when the \(r \)-ratio is low. In other words, the impact of changes in the \(e \)- and \(c \)-ratios varies inversely with the size of the \(r \)-ratio.

The impact on money of changes in the currency ratio varies inversely with the level of requirements because when the \(r \)-ratio is high, alterations in the \(c \)-ratio produce small alterations in the excess reserves of financial institutions. For example, suppose the public decides to increase its \(c \)-ratio by augmenting its currency holdings and reducing its deposits, that is, by withdrawing currency from banks.
The currency outflow will reduce the reserves of the banking system, with a portion of the decline occurring in excess reserves and the remainder in required reserves—reflecting the drop in deposits associated with the outflow. The decline in required reserves will be large if the r-ratio is high. Thus, if the r-ratio is high, a given outflow of currency from banks (that is, a given increase in the c-ratio) will produce a small drop in the excess reserves of banks. The small decline in excess reserves, in turn, will lead to a small decline in loans and investments, in deposits, and in the money supply.

The role of the level of reserve requirements in affecting the impact of changes in the c-ratio may be illustrated further by using the formula for the money supply. In Table 1, two cases—different only with regard to the r-ratio—are analyzed and compared. In case 1, the r-ratio is assumed to equal .15, that is, reserves must equal at least 15 per cent of deposits. In case 2, the r-ratio is assumed to equal .20. In all other aspects the cases are similar. It is assumed that the Federal Reserve wants the money supply to equal 250, and initially money is 250. In addition, the e-ratio is assumed to be .05, and the c-ratio is assumed initially to equal .25 and then unexpectedly to increase to .30.

In case 1, the multiplier initially is 2.5. Given this value of the multiplier, the Federal Reserve establishes the money supply at 250 by taking action to establish the monetary base at $100[M=Bm=100(2.5)=250]. A subsequent increase in the c-ratio from .25 to .30 reduces the multiplier from 2.5 to 2.27. The currency outflow from banks is 5.7, required reserves decline 4.3, so that the drop in excess reserves is 1.4. Since the rise in the c-ratio was not
predicted, the Federal Reserve maintains the base at 100 and the money supply declines to 227.3 or by 22.7.

In case 2, which assumes a higher r-ratio, the initial value of the multiplier is 2.29. Thus, the Federal Reserve can establish the money supply at 250 by setting the base at 109.4. The subsequent rise in the c-ratio to .30 reduces the multiplier to 2.11. Excess reserves decline 1.3 and the money supply falls by 19.8. The decline in excess reserves and in the money supply is less in case 2 than in case 1 because the r-ratio is high. Put another way, the deviation of the money supply from the desired level is less when the r-ratio is high. Therefore, high reserve requirements tend to enhance monetary control when the source of imprecision of control is changes in the c-ratio.6

The role of reserve requirements in affecting the impact on money of changes in the excess reserves ratio is similar to requirements' role in affecting the impact of changes in the c-ratio. That is, the magnitude of the impact on money of changes in the e-ratio varies inversely with the level of requirements. This statement could be illustrated by using the formula for the money supply, and the illustration would be similar to that in the preceding paragraph. It would show that unpredicted changes in the e-ratio cause small changes in the money supply when the r-ratio is high and large changes in money when the r-ratio is low.

In summary, then, high reserve requirements tend to enhance monetary control when the imprecision of control results from unpredicted changes in the e- and c-ratios.

THE STRUCTURE OF RESERVE REQUIREMENTS AND MONETARY CONTROL

The Federal Reserve's ability to control money is affected by the structure as well as the level of reserve requirements. The structure of requirements may refer to the relative levels of requirements on different types of deposits included in the definition of money. Alternatively, structure may refer to the level of requirements on included deposits relative to the level on excluded deposits. Both types of structure affect monetary control by affecting the impact on money of various shifts in the composition of deposits.

Structure with Regard to Included and Excluded Deposits

The structure of requirements with regard to included and excluded deposits affects the impact on money of shifts between included and excluded deposits. These compositional shifts have their impact on money through the r-ratio, as may be seen by the following formula:

\[r = r_n + r_x g, \]

where

\[r_n = \text{reserve requirements on included deposits}, \]
\[r_x = \text{reserve requirements on excluded deposits}, \]
\[g = \text{ratio of excluded to included deposits}. \]

Federal Reserve Bank of Kansas City
In the context of the formula, a shift in the composition of deposits between included and excluded deposits is reflected as a change in the g-ratio. Changes in the g-ratio cause changes in the r-ratio which lead to alterations in the money supply.

A given change in the g-ratio will have a relatively small impact on money when the level of requirements on excluded deposits is low relative to requirements on included deposits. In other words, the g-ratio's impact on money varies directly with the size of \(r_x \) relative to that of \(r_n \). That is because a given change in the g-ratio will result in a relatively large change in excess reserves if requirements on excluded deposits are low relative to requirements on included deposits.

For example, suppose the public decides to alter the composition of its deposits by increasing its time deposits, which are excluded from \(M_1 \), and reducing its demand deposits, which are included in \(M_1 \). Initially, this change in the g-ratio will reduce \(M_1 \). However, part of the initial drop in \(M_1 \) will tend to be offset because the rise in time and decline in demand deposits will reduce required reserves and increase excess reserves. Excess reserves will increase by a large amount if requirements on time deposits are low relative to requirements on demand deposits. The large rise in excess reserves will encourage a large increase in loans and investments, leading in turn to a large increase in the money supply. The large increase in the money supply will offset a large part of the initial drop in money due to the rise in the g-ratio. The Federal Reserve's control over \(M_1 \), therefore, is enhanced by low reserve requirements on time deposits relative to requirements on demand deposits.

In general, control over any definition of money is enhanced by low requirements on deposits excluded from the definition of money relative to requirements on deposits included in the definition of money.
Another important factor is the relative importance of the different noncontrollable factors that weaken the Federal Reserve's control over money. A particular extension of requirements may enhance or weaken the System's ability to control money, depending on whether alterations in the currency and excess reserves ratios or shifts in the composition of deposits are more important in contributing to imprecision of monetary control. The definition of the money supply that is to be controlled is another factor that must be considered in analyzing the impact on monetary control of extending reserve requirements. A particular extension may enhance control over one definition of money and weaken control over another definition.

An Illustration: Extending Reserve Requirements to Demand Deposits of Nonmember Banks

The impact of these various factors may be illustrated by tracing out the effect on monetary control of extending reserve requirements in various ways. Suppose, for example, that requirements were extended to the demand deposits of nonmember commercial banks and that such requirements did not exceed current requirements on demand deposits of member banks. The Federal Reserve's control over M1, which consists of publicly held currency plus demand deposits at commercial banks, would likely be enhanced by an extension of this nature. Such an extension would increase the r-ratio for M1 and would, thereby, reduce the impact on M1 of changes in the currency ratio and in the excess reserves ratio.

Some observers have argued, in effect, that an extension of reserve requirements to nonmember banks would not increase M1's r-ratio. According to this argument, nonmember banks would use their correspondent balances they now hold at member banks to satisfy their reserve requirements. In other words, nonmember banks would transfer deposits they hold at member banks to Federal Reserve Banks. The reduction in deposits at member banks would reduce the required reserves of member banks. It is argued, in effect, that this reduction in the required reserves of member banks would offset the increase in the required reserves of nonmember banks, so that total required reserves and, therefore, M1's r-ratio would remain unchanged. The argument is not valid, however, because the decline in the required reserves of member banks would be only a fraction of the amount that nonmember banks transferred to the Federal Reserve in satisfaction of their new reserve requirements. Thus, an extension of reserve requirements to nonmember banks would increase the r-ratio for M1.

An extension of reserve requirements to the demand deposits of nonmember banks, in addition to reducing the impact of changes in the currency ratio, also would reduce the impact on M1 of shifts in the composition of deposits. (See Table 2.) For example, the extension would increase the degree of uniformity of requirements on demand deposits of member and nonmember banks. Since both types of deposits are included in M1, an increase in the degree of uniformity of requirements would reduce the impact on M1 of shifts between the two types of deposits. Also, an extension of requirements to nonmember bank demand deposits would increase the requirement on such deposits relative to the requirement on various types of time deposits. Since nonmember bank demand deposits are included in M1 and time deposits

\footnote{While M1's r-ratio would increase, an extension of reserve requirements to nonmember banks could possibly fail to reduce the impact on M1 of changes in the currency ratio. This would occur if nonmember banks would use their vault cash to satisfy their reserve requirements. In this case, the excess reserves ratio would decline and offset the increase in the r-ratio, so that the sum of the r-ratio and e-ratio would remain unchanged. Therefore, the size of the c-ratio relative to the size of the r- and e-ratios combined would remain unchanged. If this occurred, the impact of changes in the c-ratio on M1 would remain unchanged. Therefore, an extension of reserve requirements to the demand deposits of nonmember banks would reduce the impact of changes in the c-ratio only if such requirements were high enough so they could not be satisfied with vault cash.}
Table 2

IMPACT ON MONETARY CONTROL OF EXTENDING RESERVE REQUIREMENTS AN ILLUSTRATION

<table>
<thead>
<tr>
<th>Sources of Imprecision in Monetary Control</th>
<th>Requirements extended to: Demand Deposits of Nonmember Banks</th>
<th>Demand and Time Deposits of Nonmember Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes in α- and c-ratios</td>
<td>M1</td>
<td>M2</td>
</tr>
<tr>
<td>Compositional shifts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Among commercial bank deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand deposits, member and demand deposits, nonmember</td>
<td>improve</td>
<td>improve</td>
</tr>
<tr>
<td>Demand deposits, member and time deposits, nonmember</td>
<td>no impact</td>
<td>no impact</td>
</tr>
<tr>
<td>Demand deposits, nonmember and time deposits, nonmember</td>
<td>improve</td>
<td>weaken</td>
</tr>
<tr>
<td>Demand deposits, nonmember and time deposits, member</td>
<td>improve</td>
<td>uncertain</td>
</tr>
<tr>
<td>Time deposits, member and time deposits, nonmember</td>
<td>no impact</td>
<td>no impact</td>
</tr>
<tr>
<td>Between time deposits of nonbanks and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand deposits, member</td>
<td>no impact</td>
<td>no impact</td>
</tr>
<tr>
<td>Demand deposits, nonmember</td>
<td>improve</td>
<td>improve</td>
</tr>
<tr>
<td>Time deposits, member</td>
<td>no impact</td>
<td>no impact</td>
</tr>
</tbody>
</table>

are excluded, an increase in the relative level of requirements on nonmember demand deposits would reduce the impact on M1 of shifts between the two categories of deposits.

The Federal Reserve's control over M2 and M3 would be enhanced in some ways and weakened in others by an extension of reserve requirements to the demand deposits of nonmember banks.\(^8\) Control would be enhanced because the extension would increase the \(r\)-ratios for these money supply measures and, thereby, reduce the impact on them of changes in the currency and excess reserves ratios. Also, the extension would reduce the impact on M2 and M3 of shifts between member and nonmember bank demand deposits. In addition, the effect on M2 of shifts between demand deposits at nonmember banks and time deposits at nonbank financial institutions would be reduced.

Monetary control over M2 would be weakened when the source of imprecision is shifts between demand and time deposits at nonmember banks. The impact on M2 of shifts between these two types of deposits would be increased because both types are included in M2 and the extension would decrease the degree of uniformity of requirements on them. For the same reason, the extension would increase the impact on M3 of shifts between demand deposits at nonmember banks and

\(^8\) M2 is defined as M1 plus time and savings deposits at commercial banks other than large negotiable certificates of deposit. M3 is defined as M2 plus deposits at savings and loan associations, mutual savings banks, and credit unions. Theoretically, M3 should exclude deposits of nonbank institutions at commercial banks.
both time deposits at nonmember banks and
time deposits at nonbank financial institutions.
Thus, the net impact on M2 and M3 of
extending reserve requirements to the demand
deposits of nonmember banks would depend on
the relative importance of various shifts in the
composition of deposits as well as of changes in
the currency and excess reserves ratios in
contributing to imprecision in monetary
control.

Another Illustration: Extending Reserve Requirements to Nonmember Banks and Nonbanks

For an additional illustration, suppose
reserve requirements were extended to demand
deposits at nonmember banks and to time
deposits at these banks and at nonbank
financial institutions. Suppose further that the
new requirements were uniform with regard to
all types of deposits. An extension of
requirements in this way would likely enhance
the Federal Reserve's ability to control the M3
definition of money. M3's r-ratio would be
increased so that the impact on M3 of
alterations in the e- and c-ratios would be
reduced. Also, the extension would reduce the
impact on M3 of certain shifts in the
composition of deposits. For example, the
extension would increase the degree of
uniformity of requirements on deposits at
member banks and deposits at nonbank
financial institutions. This would reduce the
impact on M3 of shifts between these two types
of deposits because both types are included in
the definition of M3. (See Table 2.)

The impact on the M1 and M2 definitions of
money of a uniform extension of reserve
requirements is less certain than in the case of
M3. In some ways, the Federal Reserve's ability
to control M1 and M2 would be enhanced.
Better control would occur in that the r-ratios
of M1 and M2 would be increased so that the
impact on these measures of alterations in their
e- and c-ratios would be reduced. In addition,
the impact of certain compositional shifts
would be lowered. For example, the extension
would increase the degree of uniformity of
requirements against demand deposits at both
member banks and nonmember banks. This
would reduce the impact on M1 and M2 of
shifts between these types of deposits because
both types are included in the definition of both
measures. 9

In other ways, the uniform extension of reserve requirements would reduce the Federal
Reserve's ability to control M1 and M2.
Control would be weakened in that the impact
on these measures of certain compositional
shifts would be increased. For example, a
uniform extension of reserve requirements
would increase requirements on deposits at
nonbank institutions relative to requirements
on demand deposits at member banks. Since
deposits at nonbanks are excluded from M1
and M2 and demand deposits at member banks
are included in both measures, the extension
would increase the impact on M1 and M2 of
shifts between these two categories of deposits.

Thus, the net impact on the Federal
Reserve's ability to control M1 and M2 of a
uniform extension of reserve requirements to
nonmember banks and to nonbanks would
depend on the relative importance of various
sources of imprecision of monetary control. If
changes in the e- and c-ratios and certain
compositional shifts—such as shifts between
demand deposits at member and nonmember
banks—are important, control over M1 and
M2 would be improved. However, if other
compositional shifts—such as shifts between
demand deposits at member banks and
deposits at nonbanks—are important, control
over M1 and M2 would be weakened.

9 It may be maintained that certain deposits at nonbanks, such as NOW
accounts at some mutual savings banks, probably should be included in both
M1 and M2. An extension of requirements to these kinds of deposits likely
would strengthen the Federal Reserve's ability to control M1 and M2—defined
to include these kinds of deposits.
CONCLUSIONS

A major conclusion of this article is that reserve requirements contribute to the Federal Reserve's ability to control the money supply. Requirements enhance monetary control by reducing the extent that factors other than Federal Reserve actions affect the money supply. In this way, requirements increase the reliability of the relationship between the money supply and actions of the monetary authorities.

Another conclusion is that, while requirements contribute to monetary control, the impact on control of extending reserve requirements beyond member banks depends on several considerations. One is the relative importance of various factors that tend to weaken monetary control, such as currency flows and shifts in the composition of deposits. For example, if currency flows are more important in weakening monetary control than compositional shifts, monetary control would be enhanced by any extension in the coverage of reserve requirements. That is because an extension in coverage would increase average requirements, which in turn would reduce the extent that currency flows weaken monetary control.

If shifts in the composition of deposits are more important than currency flows in reducing the precision of monetary control, the impact on control of extending requirements beyond member banks would be uncertain. That is, extending requirements would enhance the Federal Reserve's ability to control some definitions of money, but may reduce control over other definitions. For example, the Federal Reserve's ability to control the \textit{M3} definition of money would be enhanced if reserve requirements were extended to deposits of nonbank financial institutions, such as savings and loan associations, mutual savings banks, and credit unions. That is because control over any definition of money tends to be enhanced by placing reserve requirements on all deposits included in that definition. Since deposits at member banks and at nonbanks are included in \textit{M3}, extending requirements to nonbanks would help prevent shifts between member bank and nonbank deposits from affecting \textit{M3}. In this way, an extension of requirements to nonbanks would enhance the Federal Reserve's control over \textit{M3}.

To the extent that shifts in deposits between member banks and nonbanks are important, however, the extension of requirements to nonbanks would reduce the Federal Reserve's control over the \textit{M1} and \textit{M2} definitions of money. That is because control over any definition of money is weakened by requirements on deposits excluded from that definition. Since deposits at nonbanks are excluded from the definition of \textit{M1} and \textit{M2}, requirements on nonbanks would increase the impact on these measures of shifts between member bank deposits and nonbank deposits. In this way, the Federal Reserve's control over \textit{M1} and \textit{M2} may be weakened.