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            Abstract

We show that Arrow-Debreu equilibria with countably additive prices in infinite-time economy

under uncertainty can be implemented by trading infinitely-lived securities in complete sequential markets

under two different portfolio feasibility constraints: wealth constraint, and essentially bounded portfolios.

Sequential equilibria with no price bubbles implement Arrow-Debreu equilibria, while those with price

bubbles implement Arrow-Debreu equilibria with transfers. Transfers are equal to

price bubbles on initial portfolio holdings. Price bubbles arise in sequential equilibrium under the wealth

constraint if some securities are in zero supply or negative prices are permitted, but cannot arise with

essentially bounded portfolios.
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1. Introduction

Equilibrium models of dynamic competitive economies extending over infinite

time play an important role in contemporary economic theory. The basic solu-

tion concept for such models is the Arrow-Debreu (or Walrasian) equilibrium. In

Arrow-Debreu equilibrium it is assumed that agents simultaneously trade arbitrary

consumption plans for the entire infinite and state-contingent future. In applied

work, on the other hand, a different market structure and equilibrium concept

are used: instead of trading arbitrary consumption plans at a single date, agents

trade securities in sequential markets at every date in every event. The importance

of Arrow-Debreu equilibrium rests on the possibility of implementing equilibrium

allocations by trading suitable securities in sequential markets.

The idea of implementing an Arrow-Debreu equilibrium allocation by trad-

ing securities takes its origin in the classical paper by Arrow [3]. Arrow proved

that every Arrow-Debreu equilibrium allocation in a two-date economy can be

implemented by trading in complete security markets at the first date and spot

commodity markets at every date in every event. The implementation is exact—

the sets of equilibrium allocations in the two market structures are exactly the

same. Arrow’s result can be easily extended to a multidate economy with finite

time-horizon. Duffie and Huang [7] proved that Arrow-Debreu equilibria can be

implemented by trading securities in continuous-time finite-horizon economy.

In this paper we study implementation of Arrow-Debreu equilibrium allocations

by sequential trading of infinitely-lived securities in an infinite-time economy. Our

results extend those of Kandori [11], from the setting of a representative consumer,

and our previous results (Huang and Werner [10]), from the setting of no uncer-

tainty and a single security, to the general setting of multiple consumers, multiple

securities, and uncertainty. Wright [20] studied implementation in infinite-time

economies with one-period-lived securities.

The crucial aspect of implementation in infinite-time security markets is the

choice of feasibility constraints on agents’ portfolio strategies. A feasibility con-
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straint has to be imposed for otherwise agents would be able to borrow in security

markets and roll over the debt without ever repaying it (Ponzi scheme). However,

the constraint cannot be too “tight” for it could prevent agents from using port-

folio strategies that generate wealth transfers necessary to achieve consumption

plans of an Arrow-Debreu equilibrium. Wright [20] employs the wealth constraint

which says that a consumer cannot borrow more than the present value of her

future endowments. He proved that exact implementation holds with one-period-

lived securities—the set of Arrow-Debreu equilibrium allocations and the set of

equilibrium allocations in complete sequential markets are the same.

The difficulty in extending implementation results to infinitely-lived securities

lies in the possibility of price bubbles in sequential markets. Kocherlakota [12],

Magill and Quinzii [14], and Huang and Werner [10] pointed out that the wealth

constraint gives rise to sequential equilibria with price bubbles on securities that

are in zero supply. We demonstrate in this paper that, if one does not exclude

negative security prices, then there exist sequential equilibria with price bubbles

under the wealth constraint even if the supply of securities is strictly positive. We

prove that Arrow-Debreu equilibria with countably additive prices can be imple-

mented by trading infinitely-lived securities in complete sequential markets under

the wealth constraint with no price bubbles. That is, the set of Arrow-Debreu equi-

librium allocations is the same as the set of equilibrium allocations in sequential

markets with no price bubbles. Further, we show that sequential equilibria with

nonzero price bubbles correspond to Arrow-Debreu equilibria with transfers (and

with countably additive prices). Transfers are equal to the value of price bubbles

on agents’ initial portfolio holdings.

Our results imply that there are always sequential equilibria with price bub-

bles under the wealth constraint if some of the securities are in zero supply or

negative prices are permitted. This contradict the often asserted claim that price

bubbles cannot arise when agents are infinitely lived (see, for example, Blanchard

and Fischer [5] who attribute the claim to Tirole [19]). It is also in contrast to

recent results of Montruccio and Privileggi [16] who show that price bubbles are a
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“marginal phenomenon” in representative agent economies. Of course, examples

of equilibrium price bubbles have been known before, but our results demonstrate

their general existence with zero supply or negative prices. Santos and Wood-

ford [18] proved that price bubbles cannot exist when all securities are in strictly

positive supply and prices are positive.

We consider an alternative portfolio feasibility constraint which requires that

the value of borrowing at normalized security prices be bounded from below.

We call portfolio strategies satisfying this constraint essentially bounded portfo-

lio strategies. This feasibility constraint has a remarkable property that there

cannot be price bubbles in sequential equilibrium regardless of the supply of the

securities. We prove that exact implementation of Arrow-Debreu equilibria with

countably additive prices (without transfers) holds with essentially bounded port-

folio strategies.

It should be emphasized that Arrow-Debreu equilibria that can be implemented

by sequential trading of infinitely-lived securities must have countably additive

prices. It has been known since Bewley [4] that for some class of economies Arrow-

Debreu equilibrium prices may not be countably additive (for an example, see

Huang and Werner [10]). Our results indicate that those equilibria cannot be

implemented by sequential trading (except when the equilibrium allocation can

also be supported by countable additive prices).

The concept of Arrow-Debreu equilibrium underlying our analysis is due to

Peleg and Yaari [17]. Equilibrium prices assign finite values to consumption plans

that are positive and do not exceed the aggregate endowment, but may or may

not assign finite values to other consumption plans. The Peleg and Yaari approach

should be contrasted with a more standard approach, first proposed by Debreu [6]

(see also Bewley [4]), where the consumption space and the price space are a dual

pair of topological vector spaces. Under this second approach, equilibrium prices

assign finite values to all consumption plans in the consumption space. Sufficient

conditions for the existence of Peleg-Yaari equilibria with countably additive prices

can be found in Peleg and Yaari [17]. Aliprantis, Brown and Burkinshaw [1, 2]
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provide an analysis of Peleg-Yaari equilibria in general consumption spaces.

The paper is organized as follows: In section 2 we provide specification of time

and uncertainty. In section 3 we introduce the notion of Arrow-Debreu equilib-

rium and in section 4 we define a sequential equilibrium in security markets. We

assume that there is a finite number of infinitely-lived agents and a finite number

of infinitely-lived securities available for trade at every date. In sections 5 and 6

we state and prove our basic implementation results. In section 7 we present an

example that illustrates our results. We conclude with a discussion of alternative

portfolio constraints in section 8.

2. Time and Uncertainty

Time is discrete with infinite horizon and indexed by t = 0, 1 . . . . Uncertainty

is described by a set S of states of the world and an increasing sequence of finite

partitions {Ft}∞t=0 of S. A state s ∈ S specifies a complete history of the environ-

ment from date 0 to the infinite future. The partition Ft specifies sets of states

that can be verified by the information available at date t. An element st ∈ Ft is

called a date-t event. We take F0 = S so that there is no uncertainty at date 0.

This description of the uncertain environment can be interpreted as an event

tree. An event st ∈ Ft at date t identifies a node of the event tree. The unique

date 0 event s0 is the root node of the event tree. The set of all events at all dates

is denoted by E . For each node st there is a set of immediate successors and (with

exception of the root node) a unique predecessor. The unique predecessor of st is

a date-(t−1) event st
− ∈ Ft−1 such that st ⊂ st

−. An immediate successor of st is a

date-(t+1) event st+1 such that st+1 ∈ Ft+1 and st+1 ⊂ st. The set of all immediate

successors of st is denoted by Ft+1(s
t) and the number of immediate successors st

by κ(st). We assume that supst∈E κ(st) < ∞, and denote that supremum by K.

The set of all date-τ successor events of st for τ > t, that is all date-τ events

sτ ∈ Fτ with sτ ⊂ st, is denoted by Fτ (s
t). The set of successor events of st at all

dates after t is denoted by E+(st). We also write E(st) ≡ {st} ∪ E+(st).
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3. Arrow-Debreu Equilibrium

There is a single consumption good. A consumption plan is a scalar-valued

process adapted to {Ft}∞t=0. Consumption plans are restricted to lie in a linear

space C of adapted processes. Our primary choice of the consumption space C is

the space of all adapted processes (which can be identified with R∞). The cone

of nonnegative processes in C is denoted by C+; a typical element of C is denoted

by c = {c(st)}st∈E .

There are I consumers. Each consumer i has the consumption set C+, a strictly

increasing and complete preference ¹i on C+, and an initial endowment ωi ∈ C+.

The aggregate endowment ω̄ ≡ ∑
i ω

i is assumed positive, that is, ω̄ ≥ 0.

The standard notion of an Arrow-Debreu general equilibrium is extended to our

setting with infinitely many dates as follows: Prices are described by linear func-

tional P which is positive and well-defined (i.e., finite valued) on each consumer’s

initial endowment. We call such functional a pricing functional. It follows that

a pricing functional is well-defined on the aggregate endowment ω̄ and, since it is

positive, also on each attainable consumption plan, that is, on each c satisfying

0 ≤ c ≤ ω̄. It may or may not be well-defined on the entire space C.

The price of one unit consumption in event st under pricing functional P is

p(st) ≡ P (e(st)), where e(st) denotes the consumption plan equal to 1 in event st

at date t and zero in all other events and all other dates. A pricing functional P

is countably additive if and only if P (c) =
∑

E p(st)c(st) for every c for which P (c)

is well-defined.

An Arrow-Debreu equilibrium is a pricing functional P and a consumption

allocation {ci}I
i=1 such that ci maximizes consumer i’s preference ¹i subject to

P (c) ≤ P (ωi) and c ∈ C+, and markets clear, that is
∑

i c
i =

∑
i ω

i. An equilib-

rium pricing functional is normalized so that p(s0) = 1.

As noted in the introduction, this concept of Arrow-Debreu equilibrium is due

to Peleg and Yaari [17] who also provide sufficient conditions for the existence of

an equilibrium with countably additive pricing functional when the consumption
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space is C = R∞. The conditions are the standard monotonicity and convexity of

preferences, as well as continuity of preferences in the product topology.

We will also need the notion of an equilibrium with transfers. For given transfers

{εi}I
i=1, where εi ∈ R and

∑
i ε

i = 0, a pricing functional P (with p(s0) = 1) and a

consumption allocation {ci}I
i=1 are an Arrow-Debreu equilibrium with transfers if ci

maximizes consumer i’s preference ¹i subject to P (c) ≤ P (ωi)+εi and c ∈ C+, and

markets clear. Peleg and Yaari [17] conditions also imply that an Arrow-Debreu

equilibrium with transfers exists for small transfers.

4. Sequential Equilibrium and Price Bubbles

We consider J infinitely-lived securities traded at every date. We assume that

the number of securities is greater than or equal to the number of immediate

successors of every event, that is, J ≥ K. Each security j is specified by a dividend

process dj which is adapted to {Ft}∞t=0 and nonnegative. The ex-dividend price of

security j in event st is denoted by qj(s
t), and qj is the price process of security

j. Portfolio strategy θ specifies a portfolio of J securities θ(st) held after trade in

each event st. The payoff of portfolio strategy θ in event st for t ≥ 1 at a price

process q is

z(q, θ)(st) ≡ [q(st) + d(st)]θ(st
−)− q(st)θ(st). (1)

Each consumer i has an initial portfolio αi ∈ RJ at date 0. The dividend

stream αid on initial portfolio constitutes one part of consumer i’s endowment.

The rest is yi ∈ C and becomes available to the consumer at each date in every

event. Thus, it holds

ωi(st) = yi(st) + αid(st) ∀st. (2)

The supply of securities is ᾱ =
∑

i α
i, and the adjusted aggregate endowment of

goods is ȳ =
∑

i y
i. We assume that ᾱ ≥ 0.

Consumers face feasibility constraints when choosing their portfolio strategies.

Such constraints are necessary to prevent consumers from using Ponzi schemes.

In the definition of sequential equilibrium the set of feasible portfolio strategies of
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consumer i is Θi. Specific feasibility constraints will be introduced in sections 5

and 6.

A sequential equilibrium is a price process q and consumption-portfolio alloca-

tion {ci, θi}I
i=1 such that:

(i) for each i, consumption plan ci and portfolio strategy θi maximize ¹i subject

to

c(s0) + q(s0)θ(s0) ≤ yi(s0) + q(s0)αi,

c(st) ≤ yi(st) + z(q, θ)(st) ∀st 6= s0,

c ∈ C+, θ ∈ Θi;

(ii) markets clear, that is

∑
i

ci(st) = ȳ(st) + ᾱd(st),
∑

i

θi(st) = ᾱ, ∀st

Security price process q is one-period arbitrage free in event st if there does not

exist a portfolio θ(st) such that [q(st+1)+d(st+1)]θ(st) ≥ 0 for every st+1 ∈ Ft+1(s
t)

and q(st)θ(st) ≤ 0, with at least one strict inequality.1 It is well known that if

q is arbitrage free in every event, then there exist a sequence of strictly positive

numbers {πq(s
t)}st∈E with πq(s

0) = 1 such that

πq(s
t)qj(s

t) =
∑

st+1∈Ft+1(st)

πq(s
t+1)

[
qj(s

t+1) + dj(s
t+1)

] ∀st, j. (3)

We call such πq a system of event prices associated with q.

Security markets are one-period complete in event st at prices q if the one-

period payoff matrix [q(st+1)+d(st+1)]st+1∈Ft+1(st) has rank equal to κ(st). Security

markets are complete at q if they are one-period complete at every event. Of course,

the assumed condition that J ≥ K is necessary for markets to be complete.

1Note that one-period arbitrage is defined without any reference to the portfolio feasibility
constraint. Of the two constraints considered in this paper, the constraint of essentially bounded
strategies (Section 6) does not restrict portfolio holdings in any single event while the wealth
constraint (Section 5) does. Yet, it remains true that there cannot be a one-period arbitrage in
sequential equilibrium under the wealth constraint (see Santos and Woodford [18]).
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If markets are complete at q, then for each event st there exists a portfolio

strategy that has payoff equal to one at st, zero in every other event and involves

no portfolio holding after date t. If q is one-period arbitrage free, then the date-0

price of that portfolio strategy is πq(s
t) which justifies the term event price.

Suppose that security prices q are one-period arbitrage free and that markets

are complete at q. Then the present value of security j at st can be defined using

event prices as
1

πq(st)

∑

sτ∈E+(st)

πq(s
τ )dj(s

τ ). (4)

If the price of security j is nonnegative in every event, then the sum (4) is finite

for every st. To see this, we use (3) recursively to obtain

qj(s
t) =

T∑
τ=t+1

∑

sτ∈Fτ (st)

πq(s
τ )

πq(st)
dj(s

τ ) +
∑

sT∈FT (st)

πq(s
T )

πq(st)
qj(s

T ) (5)

for each st, and for any T > t. If qj(s
t) ≥ 0, then (5) implies that

qj(s
t) ≥ 1

πq(st)

T∑
τ=t+1

∑

sτ∈Fτ (st)

πq(s
τ )dj(s

τ ) (6)

for every st and T > t. Taking the limit on the right hand side of (6) as T goes to

infinity and using dj(s
τ ) ≥ 0, we obtain that the present value (4) is less than or

equal to the price of the security.

We do not exclude the possibility of security prices being negative. Absence

of one-period arbitrage does not imply that security prices are nonnegative even if

dividends are nonnegative.2 A way to exclude negative security prices is to assume

free disposal of securities (see Santos and Woodford [18]).3

If the present value of a security is finite, then the difference between the price

and the present value is the price bubble on that security. We denote the price

2We show later in the paper that negative security prices are possible in sequential equilibrium
under the wealth constraint but not with essentially bounded portfolio strategies.

3The assumption of free disposal is prohibitively restrictive for many securities. For example,
futures markets would not exist if futures contracts could be freely disposed.
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bubble (associated with q) on security j in event st by σqj(s
t). That is

σqj(s
t) ≡ qj(s

t)− 1

πq(st)

∑

sτ∈E+(st)

πq(s
τ )dj(s

τ ). (7)

Note that if the price of security j is nonnegative in every event, then 0 ≤ σqj(s
t) ≤

qj(s
t) for every st. Also, if the present value of security j is finite and σqj(s

t) ≥ 0

for every st, then qj(s
t) ≥ 0 for every st.

For use later, we note that (5) and (7) imply that

σqj(s
t) =

1

πq(st)

∑

st+1∈Ft+1(st)

πq(s
t+1)σqj(s

t+1), (8)

and also that

σqj(s
t) = lim

T→∞
1

πq(st)

∑

sT∈FT

πq(s
T )qj(s

T ). (9)

for each st.

Whether nonzero price bubbles can exist in a sequential equilibrium depends

crucially on the form of portfolio feasibility constraints (see Huang and Werner

[10]). Under the wealth constraint (Section 5) nonzero equilibrium price bubbles

are possible but they are not possible under the constraint of essentially bounded

portfolio strategies (Section 6).

5. Implementation with the Wealth Constraint.

A frequently used portfolio feasibility constraint is the wealth constraint. It

applies to complete security markets where event prices can be uniquely defined.4

It prohibits a consumer from borrowing more than the present value of his future

endowment. Formally, portfolio strategy θ satisfies the wealth constraint if

q(st)θ(st) ≥ − 1

πq(st)

∑

sτ∈E+(st)

πq(s
τ )yi(sτ ) ∀st, (10)

where πq is the event price system (assumed unique) associated with q. We refer to

a sequential equilibrium in which every consumer’s set of feasible portfolio strate-

gies is defined by (10) as a sequential equilibrium under the wealth constraint.

4Santos and Woodford [18] extend the wealth constraint to incomplete markets.
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We begin with two theorems that establish equivalence between countably ad-

ditive Arrow-Debreu equilibria and sequential equilibria with no price bubbles. All

proofs have been relegated to the Appendix.

Theorem 5.1. Let consumption allocation {ci}I
i=1 and pricing functional P be

an Arrow-Debreu equilibrium. If P is countably additive, P (dj) < ∞ for each j,

and security markets are complete at prices q given by

qj(s
t) =

1

p(st)

∑

sτ∈E+(st)

p(sτ )dj(s
τ ), ∀st, j, (11)

then there exists a portfolio allocation {θi}I
i=1 such that q and the allocation {ci, θi}I

i=1

are a sequential equilibrium under the wealth constraint.

Theorem 5.1 says that an Arrow-Debreu equilibrium with countably additive

pricing can be implemented by sequential trading under the wealth constraint

provided that security markets are complete at prices defined by the present value

of future dividends (and thus with no price bubbles). The assumed condition that

there are more securities than immediate successors of every event (J ≥ K) is

necessary for market completeness.

The implementation of countably additive Arrow-Debreu equilibria by sequen-

tial trading with no price bubbles is exact.

Theorem 5.2 Let security prices q and consumption-portfolio allocation {ci, θi}I
i=1

be a sequential equilibrium under the wealth constraint. If security markets are

complete at q and price bubbles are zero, i.e., σq = 0, then consumption allocation

{ci}I
i=1 and the pricing functional P given by

P (c) =
∑

st∈E
πq(s

t)c(st) (12)

are an Arrow-Debreu equilibrium.

Our next results show that, in general, there exist sequential equilibria under

the wealth constraint with nonzero price bubbles, and that they correspond to

countably additive Arrow-Debreu equilibria with transfers.
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Theorem 5.3. Let consumption allocation {ci}I
i=1 and pricing functional P

be an Arrow-Debreu equilibrium with transfers {εi}I
i=1 such that εi = ρ(s0)αi for

some ρ(s0) ∈ RJ with ρ(s0)ᾱ = 0. If P is countably additive, P (dj) < ∞ for each

j, and security markets are complete at prices q given by

qj(s
t) =

1

p(st)

∑

sτ∈E+(st)

p(sτ )dj(s
τ ) + ρj(s

t), ∀st, j, (13)

where ρ(st) ∈ RJ satisfies ρ(st)ᾱ = 0 for every st and

ρj(s
t) =

1

p(st)

∑

st+1∈Ft+1(st)

p(st+1)ρj(s
t+1), ∀st, j, (14)

then there exists a portfolio allocation {θi}I
i=1 such that q and allocation {ci, θi}I

i=1

are a sequential equilibrium under the wealth constraint.

Theorem 5.3 says that every Arrow-Debreu equilibrium allocation with trans-

fers that are proportional to initial portfolios and with countably additive pricing

can be implemented by sequential trading under the wealth constraint, provided

that security markets are complete. Proportionality of transfers to initial portfo-

lios, i.e., εi = ρ(s0)αi for some ρ(s0), implies that a consumer whose initial portfolio

is zero, must have zero transfer. If all consumers have zero initial portfolios, then

only Arrow-Debreu equilibrium without transfers can be implemented in sequential

markets.

Security prices in Theorem 5.3 have price bubbles equal to ρ. There is consid-

erable freedom in choosing price bubbles in the construction of prices (13). The

only constraints on ρ are the “martingale property” (14) and the condition of zero

bubble on the supply of securities. This freedom in choosing price bubbles can be

used to assure that security markets are complete at prices (13) (see the example

of Section 7).

If one is willing to restrict attention to positive security prices and therefore

to positive price bubbles, the scope of Theorem 5.3 is restricted as ρ has to be

positive. With ρ positive condition ρ(s0)ᾱ = 0 implies that ρj(s
0) = 0 for every
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security j with ᾱj > 0. Then (14) implies that ρj(s
t) = 0 for such j, for every

st. Thus, there cannot be positive price bubbles in sequential equilibrium on a

security with strictly positive supply. This has been demonstrated by Santos and

Woodford [18]. If all securities are in strictly positive supply, then only Arrow-

Debreu equilibrium without transfers can be implemented in sequential markets

with positive prices.

The implementation of countably additive Arrow-Debreu equilibria with trans-

fers is exact.

Theorem 5.4. Let security prices q and consumption-portfolio allocation

{ci, θi}I
i=1 be a sequential equilibrium under the wealth constraint. If security mar-

kets are complete at q and
∑

st∈E πq(s
t)dj(s

t) < ∞ for each j, then consumption

allocation {ci}I
i=1 and the pricing functional P given by

P (c) =
∑

st∈E
πq(s

t)c(st) (15)

are an Arrow-Debreu equilibrium with transfers {σq(s
0)αi}I

i=1. It holds σq(s
0)ᾱ =

0.

We emphasize that Arrow-Debreu equilibria (with or without transfers) that

can be implemented in sequential markets under the wealth constraint have count-

ably additive pricing. There are economies in which Arrow-Debreu equilibrium

pricing functional is not countably additive (see Huang and Werner [10]). These

equilibria cannot be implemented in sequential markets under the wealth con-

straint.

6. Implementation with Essentially Bounded Portfolios.

We propose in this section a portfolio feasibility constraint under which only

Arrow-Debreu equilibria without transfers can be implemented in sequential mar-

kets and price bubbles cannot arise.

Portfolio strategy θ is bounded from below if

inf
st,j

θj(s
t) > −∞ (16)
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Portfolio strategy θ is essentially bounded from below at q if there exists a bounded

from below portfolio strategy b such that

q(st)θ(st) ≥ q(st)b(st) ∀st. (17)

We refer to a (essentially) bounded from below portfolio strategies simply as (es-

sentially) bounded portfolio strategy. Of course, every bounded portfolio strategy

is essentially bounded but the converse is not true (unless there is a single security).

The set of essentially bounded portfolio strategies is a convex cone.

If security price vector q(st) is positive and nonzero for every event st, then

portfolio strategy θ is essentially bounded if and only if

inf
st

q̄(st)θ(st) > −∞, (18)

where q̄(st) ≡ q(st)/
∑

j qj(s
t) is the normalized security price vector.5

We refer to sequential equilibrium in which each consumer’s set of feasible

portfolios is the set of essentially bounded portfolio strategies (17) as a sequential

equilibrium with essentially bounded portfolios.

It is crucial for the results in this section that the portfolio feasibility con-

straint is stated in the form (17). Neither the bounded borrowing constraint

infst q(st)θ(st) > −∞, nor (16) deliver the same results. Only if there is a sin-

gle security, (17) and (16) are equivalent, and in that sense the results of this

section extend Theorem 9.1 in Huang and Werner [10].

Before presenting the implementation results we prove that there cannot be a

nonzero price bubble in sequential equilibrium with essentially bounded portfolios.

All proofs in this section have been relegated to the Appendix.

Theorem 6.1. If q is a sequential equilibrium price process with essentially

bounded portfolios and if security markets are complete at q, then q(st) ≥ 0 and

σq(s
t) = 0 for every st.

5If θ satisfies (17) and q ≥ 0, then q(st)θ(st) ≥ [
∑

j qj(st)]b, where b = infst,j bj(st). Hence
q̄(st)θ(st) is bounded below. Conversely, if θ satisfies (18), then q̄(st)θ(st) ≥ B for some B ∈ R.
With bj(st) = B for each j and st, θ satisfies (17).
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That the price of each security has to be positive follows from the fact that a

portfolio strategy of short-selling the security and never buying it back is bounded.

If the price were negative, then each consumer could short-sell the security (and

do so at an arbitrary scale) and make an arbitrage profit. This is incompatible

with an equilibrium. A similar arbitrage argument implies that price bubbles are

zero. For each security there is an essentially bounded portfolio strategy with initial

investment equal to the negative of the price bubble and zero payoff in every future

event. If the price bubble were positive (it cannot be negative as shown in Section

4) each consumer could make an arbitrage profit of arbitrary scale. A detailed

proof can be found in the Appendix.

The following two theorems demonstrate that countably additive Arrow-Debreu

equilibria (without transfers) can be implemented by sequential trading with es-

sentially bounded portfolios in exact fashion.

Theorem 6.2. Let consumption allocation {ci}I
i=1 and pricing functional P be

an Arrow-Debreu equilibrium. If P is countably additive, P (dj) < ∞ for each j,

security markets are complete at prices q given by

qj(s
t) =

1

p(st)

∑

sτ∈E+(st)

p(sτ )dj(s
τ ), ∀st, j, (19)

and there exists an essentially bounded portfolio strategy η such that

− 1

p(st)

∑

sτ∈E+(st)

p(sτ )ȳ(st) ≥ q(st)η(st), ∀st, (20)

then there exists a portfolio allocation {θi}I
i=1 such that q and the allocation {ci, θi}I

i=1

are a sequential equilibrium with essentially bounded portfolios.

Condition (20) says that it is feasible to borrow an amount greater than or equal

to the present value of aggregate future endowment using an essentially bounded

portfolio strategy. Equivalently, it is feasible for each consumer to borrow the

present value of his endowment using an essentially bounded portfolio strategy.

Under condition (20), the set of all essentially bounded portfolio strategies includes

all strategies satisfying the wealth constraint.
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Theorem 6.3. Let security prices q and consumption-portfolio allocation

{ci, θi}I
i=1 be a sequential equilibrium with essentially bounded portfolios. If se-

curity markets are complete at q and there exists an essentially bounded portfolio

strategy η such that

− 1

πq(st)

∑

sτ∈E+(st)

πq(s
τ )ȳ(st) ≥ q(st)η(st), ∀st, (21)

then consumption allocation {ci}I
i=1 and pricing functional P given by

P (c) =
∑

st∈E
πq(s

t)c(st) (22)

are an Arrow-Debreu equilibrium.

One can show that for condition (21) or (20) to hold it is sufficient that there

exists a bounded from above and from below portfolio strategy b such that ȳ(st) ≤
z(q, b)(st) for all st. For this latter condition, it is sufficient that ȳ is bounded

relative to d, that is, that ȳ(st) ≤ γd(st) for some γ ∈ RJ , for all st.

7. Example.

We consider an infinite-time binomial event-tree. Event st at date t has two

immediate successors (st, up) and (st, down) at date t + 1. Probabilities of events

are specified by conditional probabilities µ(up|st) = µ(down|st) = 1
2
.

There are two consumers with expected utility functions

ui(c) =
∞∑

t=0

βtE[ln(ct)], (23)

for i = 1, 2, where expectation is taken with respect to µ, and 0 < β < 1. Their

endowments are

ω1(st, up) = A, ω1(st, down) = B, (24)

and

ω2(st, up) = B, ω2(st, down) = A, (25)
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for each st with t ≥ 0, and

ω1(s0) = ω2(s0) =
A + B

2
. (26)

The aggregate endowment is A + B – risk-free, and constant over time.

The unique Arrow-Debreu equilibrium consists of allocation {c1, c2} given by

c1(st) = c2(st) =
A + B

2
, ∀st, (27)

supported by a countably additive pricing functional P given by

p(st) = βtµ(st). (28)

Next, we consider security markets with two infinitely-lived securities. Security

1 has risk-free dividends given by

d1(s
t) = 1 ∀st, t ≥ 1. (29)

Security 2 has state-dependent dividends given by

d2(s
t, up) = u, d2(s

t, down) = d, (30)

for each st with t ≥ 0. We assume that u > d. Initial portfolios are α1 = (1, 1) and

α2 = (−1, 0). Adjusted goods endowments are y1 = ω1− d1−d2 and y2 = ω2 + d1.

Theorem 5.1 says that the Arrow-Debreu equilibrium consumption allocation

(27) can be implemented as a sequential equilibrium under the wealth constraint.

Equilibrium security prices obtain from (11) and are

q1(s
t) =

∞∑
τ=1

βτ =
β

1− β
(31)

and

q2(s
t) =

u + d

2

∞∑
τ=1

βτ =
u + d

2

β

1− β
, (32)

for every st. At these prices security markets are complete. Further, there are no

price bubbles.
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For small enough transfers ε1, ε2 (with ε1 + ε2 = 0), there is an Arrow-Debreu

equilibrium with transfers. It consists of consumption allocation

c̃1(st) =
A + B

2
+ ε1(1− β), ∀st, (33)

and

c̃2(st) =
A + B

2
+ ε2(1− β), ∀st, (34)

supported by the countably additive pricing functional P given by (28).

Theorem 5.3 implies that consumption allocation (33 - 34) of the Arrow-Debreu

equilibrium with transfers can be implemented as a sequential equilibrium under

the wealth constraint, provided that transfers are proportional to initial portfolios.

Transfers ε1 and ε2 have to satisfy ε1 = ρ(s0)α1 and ε2 = ρ(s0)α2 for some ρ(s0) =

(ρ1(s
0), ρ2(s

0)) ∈ R2 with ρ(s0)ᾱ = 0. Since ᾱ = (0, 1), this implies ρ2(s
0) = 0,

ε1 = ρ1(s
0) and ε2 = −ρ1(s

0), with no restriction on ρ1(s
0), and therefore no

restriction (beyond ε1+ε2 = 0) on transfers. Thus every Arrow-Debreu equilibrium

with transfers can be implemented.

Equilibrium security prices can be obtained from (13). They are

q̃1(s
t) =

∞∑
τ=1

βτ + ρ1(s
t) =

β

1− β
+ ρ1(s

t), (35)

and

q̃2(s
t) =

u + d

2

∞∑
τ=1

βτ + ρ2(s
t) =

u + d

2

β

1− β
+ ρ2(s

t), (36)

where ρ(st) = (ρ1(s
t), ρ2(s

t)) is chosen for each st so as to satisfy

ρ(s0) = (ε1, 0) (37)

ρ(st) = β[
1

2
ρ(st, up) +

1

2
ρ(st, down)]. (38)

Further, the sequence of price bubbles ρ has to be selected so that security markets

are complete at prices q̃. Markets are complete whenever the one-period 2-by-2

payoff matrix [q̃(st+1) + d(st+1)]st+1∈Ft+1(st) has full rank for every st. If we restrict

price bubbles to be positive, then necessarily ρ2(s
t) = 0 for every st so that there
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can be positive price bubbles only on zero-supply security 1. We recall that negative

price bubbles lead eventually to negative security prices in some events.

The results of Section 6 imply that only the Arrow-Debreu equilibrium alloca-

tion (27) can be implemented as sequential equilibrium with essentially bounded

portfolios. Equilibrium security prices are those of (31 - 32). Arrow-Debreu equi-

librium allocations with transfers (33 - 34) cannot be implemented. In particular,

security prices (35 - 36) are not equilibrium prices with essentially bounded portfo-

lios since they permit arbitrage opportunities (see Theorem 6.1 and the discussion

thereafter).

8. Other Portfolio Constraints.

An often used feasibility constraint on portfolio strategies is the transversality

condition. In our setting the transversality condition is written as

lim inf
T→∞

∑

sT∈FT (st)

πq(s
T )q(sT )θ(sT ) ≥ 0 ∀st. (39)

Hernandez and Santos [9] proved that consumers’ budget sets in sequential markets

are the same under the wealth constraint and the transversality condition, as long

as
∑

st∈E πq(s
t)yi(st) < ∞. Therefore, all implementation results of Section 5

remain valid when the wealth constraint is replaced by the transversality condition

(and under an additional assumption that
∑

st∈E πq(s
t)ȳ(st) < ∞).

Hernandez and Santos [9] and Magill and Quinzii [15] provide other specifi-

cations of portfolio constraints that lead to the same budget sets as the wealth

constraint. For further discussion of equivalent portfolio constraints in the set-

ting with one-period-lived securities, see Florenzano and Gourdel [8], Magill and

Quinzii [15], and Levine and Zame [13].
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Appendix.

We start by proving a lemma concerning relation between budget sets in se-

quential markets under the wealth constraint and in Arrow-Debreu markets. We

recall that πq and σq denote the systems of event prices and price bubbles (respec-

tively) associated with given security prices q. Further, p denotes the system of

event prices associated with given pricing functional P .

Let Bw(q; yi, αi) denote the set of budget feasible consumption plans in sequen-

tial markets at prices q under the wealth constraint, when goods endowment is yi

and initial portfolio is αi. That is, c ∈ Bw(q; yi, αi) if c ∈ C+ and there exists a

portfolio strategy θ such that

c(s0) + q(s0)θ(s0) ≤ yi(s0) + q(s0)αi,

c(st) ≤ yi(st) + z(q, θ)(st) ∀st 6= s0, (40)

q(st)θ(st) ≥ − 1

πq(st)

∑

sτ∈E+(st)

πq(s
τ )yi(sτ ) ∀st.

Let BAD(P ; ωi, εi) denote the set of budget feasible consumption plans in Arrow-

Debreu markets at P when endowment is ωi and transfer is εi. That is, c ∈
BAD(P ; ωi, εi) if c ∈ C+ and

P (c) ≤ P (ωi) + εi. (41)

The budget set with zero transfer BAD(P ; ωi, 0) is denoted by BAD(P ; ωi).

Throughout the Appendix, endowments ωi, yi and αi are related by (2), that

is,

ωi(st) = yi(st) + αid(st) ∀st. (42)

Lemma A.1. Let P be a countably additive pricing functional and q a market-

completing system of security prices. If

πq(s
t) = p(st) ∀st, (43)
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and P (yi) < ∞, P (dj) < ∞ for each i and j, then

Bw(q; yi, αi) = BAD(P ; ωi, αiσq(s
0)) (44)

Proof: Suppose that c ∈ Bw(q; yi, αi). Multiplying both sides of the budget

constraint (40) at st by πq(s
t) and summing over all st for t ranging from 0 to

arbitrary τ , and using (3), we obtain

τ∑
t=0

∑

st∈Ft

πq(s
t)c(st)+

∑
sτ∈Fτ

πq(s
τ )q(sτ )θ(sτ ) ≤

τ∑
t=0

∑

st∈Ft

πq(s
t)yi(st)+q(s0)αi. (45)

Adding
∑∞

t=τ+1

∑
st∈Ft

πq(s
t)yi(st) to both sides of (45), there results

τ∑
t=0

∑

st∈Ft

πq(s
t)c(st) +

∑
sτ∈Fτ


πq(s

τ )q(sτ )θ(sτ ) +
∑

st∈E+(sτ )

πq(s
t)yi(st)




≤
∑

st∈E
πq(s

t)yi(st) + q(s0)αi. (46)

The sum
∑

st∈E πq(s
t)yi(st) is finite by assumption. If the use is made of the wealth

constraint, (46) implies that

τ∑
t=0

∑

st∈Ft

πq(s
t)c(st) ≤

∑

st∈E
πq(s

t)yi(st) + q(s0)αi (47)

Taking limits in (47) as τ goes to infinity yields

∑

st∈E
πq(s

t)c(st) ≤
∑

st∈E
πq(s

t)yi(st) + q(s0)αi. (48)

Since
∑

st∈E πq(s
t)dj(s

t) is assumed finite for every j, the price bubble σq(s
0) is

well-defined. If the use is made of (7) and (42), inequality (48) can be written as

∑

st∈E
πq(s

t)c(st) ≤
∑

st∈E
πq(s

t)ωi(st) + αiσq(s
0), (49)

or simply as

P (c) ≤ P (ωi) + αiσq(s
0). (50)
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Thus c ∈ BAD(P ; ωi, αiσq(s
0)).

Suppose now that c ∈ BAD(P ; ωi, αiσq(s
0)). Since security markets are com-

plete at q, for each st there exists portfolio θ(st) such that

[q(st+1) + d(st+1)]θ(st) =
∑

sτ∈E(st+1)

πq(s
τ )

πq(st+1)
[c(sτ )− yi(sτ )] ∀st+1 ∈ Ft+1(s

t).

(51)

Note that the sum on the right-hand side of (51) is finite since
∑

sτ∈E(st+1) πq(s
τ )c(sτ ) ≤

P (c). Multiplying both sides of (51) by πq(s
t+1), summing over all st+1 ∈ Ft+1(s

t),

and using (3), we obtain

q(st)θ(st) =
∑

sτ∈E+(st)

πq(s
τ )

πq(st)
[c(sτ )− yi(sτ )] ∀st. (52)

It follows from (51) and (52) that

c(st) + q(st)θ(st) = yi(st) + [q(st) + d(st)]θ(st
−) ∀st 6= s0. (53)

Thus c and θ satisfy the sequential budget constraint (40) at each st 6= s0. To

show that the budget constraint at s0 also holds we use the equivalence of (50)

and (48). Equation (52) for s0 and (48) imply the date-0 budget constraint

c(s0) + q(s0)θ(s0) ≤ yi(s0) + q(s0)αi. (54)

Since c ≥ 0, equation (52) implies that θ satisfies the wealth constraint. Thus

c ∈ Bw(q; yi, αi) 2

Proof of Theorem 5.1: For the system of security prices q defined by (11),

the associated event prices πq satisfy (43) and price bubbles σq are zero. Since

P (ωi) < ∞ and P (dj) < ∞, it follows that P (yi) < ∞. Therefore, Lemma A.1

implies that the budget set in sequential markets at q equals the Arrow-Debreu

budget set with zero transfer. Hence, consumption plan ci is optimal for each i in

sequential markets. It remains to be shown that portfolio strategies that generate

the optimal consumption plans clear security markets.
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Let θi be portfolio strategy defined by (51) with ci, that is, satisfying

[q(st+1) + d(st+1)]θi(st) =
∑

sτ∈E(st+1)

p(sτ )

p(st+1)
[ci(sτ )− yi(sτ )] ∀st+1 ∈ Ft+1(s

t)

(55)

for each st and each i. Such portfolio strategy generates consumption plan ci and

satisfies i’s the wealth constraint. Summing (55) over all i and using
∑

i c
i =

∑
i ω

i

and (42), we obtain

[q(st) + d(st)]
∑

i

θi(st
−) =

∑

sτ∈E(st)

p(sτ )

p(st)
d(sτ )ᾱ ∀st 6= s0. (56)

It follows from (11) and (56) that

[q(st) + d(st)]

[∑
i

θi(st
−)− ᾱ

]
= 0 ∀st 6= s0. (57)

If there are no securities with redundant one-period payoffs, then (57) implies that

∑
i

θi(st) = ᾱ ∀st. (58)

Otherwise, if there are redundant securities, then portfolio strategies {θi} can be

modified without changing their payoffs so that (58) holds.2

Proof of Theorem 5.2: In a sequential equilibrium under the wealth constraint,

the present value 1
πq(st)

∑
sτ∈E+(st) πq(s

τ )yi(sτ ) must be finite, for otherwise there

would not exist an optimal portfolio strategy for consumer i. Therefore P (yi) < ∞.

Further, since price bubbles are zero, it follows that P (dj) < ∞ (see Section 4).

Lamma A.1 can be applied and it implies the conclusion. 2

Proof of Theorem 5.3: If security prices q defined by (13) are market completing,

then the associated system of event prices πq is unique and satisfies (43). The

associated price bubbles are σq = ρ. As in the proof of Theorem 5.1, one can show

that P (yi) < ∞. It follows from Lemma A.1 that each consumption plan ci is

optimal in sequential markets.
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The proof that portfolio strategies that generate the optimal consumption plans

also clear security markets is the same as in Theorem 5.1 with one minor mod-

ification. With security prices defined by (13), we obtain the following equation

instead of (57):

[q(st) + d(st)]

[∑
i

θi(st
−)− ᾱ

]
= −ρ(st)ᾱ ∀st 6= s0. (59)

However, since ρ(st)ᾱ = 0, equation (57) does hold and the rest of the proof of

Theorem 5.1 applies.

Proof of Theorem 5.4: The same argument as in the proof of Theorem 5.2

implies that P (yi) < ∞. It follows immediately from Lemma A.1 that pricing

functional P and consumption allocation {ci}I
i=1 are an Arrow-Debreu equilibrium

with transfers {σq(s
0)αi}I

i=1. That these transfers add up to zero (or, equivalently,

price bubble on the supply of securities is zero) follows from Walras’ Law

∑
i

P (ci) =
∑

i

P (ωi) + σq(s
0)ᾱ (60)

and market-clearing
∑

i c
i =

∑
i ω

i. 2

Proof of Theorem 6.1: We first show that q ≥ 0. Suppose, by contradiction, that

qj(s
t) < 0 for some security j and event st. Let ci be equilibrium consumption plan

and θi equilibrium portfolio strategy of consumer i. Consider a portfolio strategy θ̂i

that results from holding θi and purchasing one share of security j in event st and

holding it forever. Since θi is essentially bounded, θ̂i is essentially bounded, too.

Further, since qj(s
t) < 0 and dj ≥ 0, portfolio strategy θ̂i generates a consumption

plan that is greater than or equal to ci in every event and strictly greater in event

st. This contradicts the optimality of ci.

We can now assume that q ≥ 0. It follows from the discussion in Section 4 that

the present value (4) of each security is finite and the price bubble is well-defined

and nonnegative in every event. To prove that σq(s
t) = 0 for every t it suffices to

show that σq(s
0) = 0. The rest follows from (8).
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Since security markets are complete at q, for each event st and each security j

there exists a portfolio ξj(st) such that

[q(st+1) + d(st+1)]ξj(st) =
∑

sτ∈E(st+1)

πq(s
τ )

πq(st+1)
dj(s

τ ) ∀st+1 ∈ Ft+1(s
t). (61)

Multiplying both sides of (61) by πq(s
t+1), summing over all st+1 ∈ Ft+1(s

t) and

using (3) we obtain

q(st)ξj(st) =
∑

sτ∈E+(st)

πq(s
τ )

πq(sτ )
dj(s

τ ). (62)

Since dj ≥ 0, it follows that q(st)ξj(st) ≥ 0. Therefore ξj is essentially bounded.

Using (61) and (62), we obtain

[q(st) + d(st)]ξj(st
−)− q(st)ξj(st) = dj(s

t) ∀st 6= s0, (63)

Thus, the payoff of ξj equals the dividend dj, that is z(q, ξj) = dj. Date-0 price of

ξj is the present value of dj (see (62)).

Let ηj denote a portfolio strategy of selling one share of security j at date 0

and never buying it back. We have

z(q, ξj + ηj)(st) = 0 ∀st 6= s0. (64)

and

q(s0)[ξj(s0) + ηj(s0)] = −σqj(s
0). (65)

Consider portfolio strategy θ̂i = θi + ξj + ηj. Since strategies θi, ξj and ηj are

essentially bounded, θ̂i is essentially bounded, too. If σqj(s
0) > 0, then θ̂i generates

a consumption plan that is strictly greater than ci at date 0 and equal to ci in all

future events. This would contradict optimality of ci. Therefore σqj(s
0) = 0. 2

Before proving Theorems 6.2 and 6.3 we establish a lemma concerning rela-

tion between budget sets in sequential markets with essentially bounded portfolio

strategies and in Arrow-Debreu markets.

Let Bb(q; y
i, αi) denote the set of budget feasible consumption plans in sequen-

tial markets at prices q with essentially bounded portfolio strategies, when goods
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endowment is yi and initial portfolio is αi. That is, c ∈ Bb(q; y
i, αi) if c ∈ C+ and

there exists an essentially bounded portfolio strategy θ such that

c(s0) + q(s0)θ(s0) ≤ yi(s0) + q(s0)αi,

c(st) ≤ yi(st) + z(q, θ)(st) ∀st 6= s0, . (66)

We have

Lemma A.2. Let P be a countably additive pricing functional and q ≥ 0 a

market-completing system of security prices with zero price bubbles, i.e., σq = 0.

If

πq(s
t) = p(st) ∀st, (67)

and there exists an essentially bounded portfolio strategy η such that

− 1

πq(st)

∑

sτ∈E+(st)

πq(s
τ )yi(st) ≥ q(st)η(st), ∀st, (68)

then

Bb(q; y
i, αi) = BAD(P ; ωi) (69)

Proof: Let c ∈ Bb(q; y
i, αi). As in the proof of Lemma A.1, budget constraint

(66) implies (45). Taking limits in (45) as τ goes to infinity, we obtain

∑

st∈E
πq(s

t)c(st) + lim inf
τ→∞

∑
sτ∈Fτ

πq(s
τ )q(sτ )θ(sτ ) ≤

∑

st∈E
πq(s

t)yi(st) + q(s0)αi. (70)

Note that (68) for s0 implies that

∑

st∈E
πq(s

t)yi(st) ≤ yi(s0)− q(s0)η(s0) (71)

which shows that
∑

st∈E πq(s
t)yi(st) is finite. We claim that

lim inf
τ→∞

∑
sτ∈Fτ

πq(s
τ )q(sτ )θ(sτ ) ≥ 0. (72)
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Since θ is essentially bounded, it follows that

∑
sτ∈Fτ

πq(s
τ )q(sτ )θ(sτ ) ≥

∑
sτ∈Fτ

πq(s
τ )q(sτ )b(sτ ) ∀τ, (73)

for some bounded portfolio strategy b. Since σqj(s
0) = 0, (9) implies that the limit,

as τ goes to infinity, of the right-hand side of (73) is positive.

Inequalities (72) and (70) imply (48), that is

∑

st∈E
πq(s

t)c(st) ≤
∑

st∈E
πq(s

t)yi(st) + q(s0)αi, (74)

Using the same arguments as in the proof of Lemma A.1 we can rewrite (74) as

P (c) ≤ P (ωi). (75)

Thus c ∈ BAD(P ; ωi).

Suppose now that c ∈ BAD(P ; ωi). In the proof of Lemma A.1 we constructed

a portfolio strategy that generates c at security prices q and satisfies the wealth

constraint. That is,

q(st)θ(st) ≥ − 1

πq(st)

∑

sτ∈E+(st)

πq(s
τ )yi(sτ ) ∀st. (76)

Using (68) we obtain

q(st)θ(st) ≥ q(st)η(st) ∀st, (77)

which implies that θ is essentially bounded. Consequently, c ∈ Bb(q; y
i, αi). 2

Proof of Theorem 6.2: Lemma A.2 implies that consumption plan ci is opti-

mal for each i in sequential markets under the constraint of essentially bounded

portfolio strategies. The proof that portfolio strategies that generate the optimal

consumption plans clear security markets is the same as in Theorem 5.1. 2

Proof of Theorem 6.3: It follows immediately from Lemma A.2. 2
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