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Abstract

Mitigating climate change is critically linked to reducing an economy’s reliance on 
fossil energy. This paper examines U.S. energy dependence, measured by its factor share, 
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change. With time-varying capital equipment-energy substitutability, changes in observed 
factor quantities alone can account for most of the variations in the income share of en-
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1 Introduction

Carbon dioxide (CO2) emissions are the main driver of global climate change, and burning

fossil fuels (coal, natural gas, and petroleum) accounts for the majority of human-based CO2

emissions. For instance, in the U.S., the world’s second-largest emitter, more than 90 percent

of total CO2 emissions came from burning fossil fuels in 2019.1 As emissions and, hence, the

atmospheric concentration of CO2 have reached record levels, calls have grown for countries to

make steeper emissions cuts. For example, in the U.S., these circumstances have led to a series

of steps such as rejoining the Paris Agreement, a global effort to significantly reduce greenhouse

gas emissions.

One way to reduce CO2 emissions is by reducing carbon intensity, which critically depends

on energy intensity—energy consumed per dollar of GDP (Pindyck (2021)). However, as of

2019, fossil energy still met 80 percent of U.S. total primary energy consumption, as high as a

decade ago. Although reductions in fossil energy use have been limited, fossil energy intensity

for the U.S. has been declining since the late 1970s partly because of gradual changes in the

composition of GDP and the way it is produced.2 In the meantime, U.S. income share of fossil

energy (part of national income going to energy) does not seem to have an obvious trend. It

posts large fluctuations, similar to the price of fossil energy: increasing considerably after the

first oil shock, then falling dramatically in the 1980s, and staying low and relatively stable in

the 1990s before increasing again in the 2000s.

This paper takes a macroeconomic approach to examine an economy’s reliance on energy

measured by its factor share, building on the work of Krusell et al. (2000). The goal is to

present a simple, explicit economic mechanism accounting for the historical variation in the

U.S. income share of energy in terms of observed factor quantities over the past six decades.

We then use our theory to quantitatively explore the extent to which the economy could reach

climate-related targets.

We interpret U.S. data from the perspective of a production function for aggregate domestic

output that has five-factor inputs—capital equipment, capital structures, skilled and unskilled

labor, and fossil energy—and allow for different elasticities of substitution among these inputs.

We distinguish between capital equipment and structures, as their relative prices and stock

levels have grown at strikingly different rates. Moreover, the ratio of the quantity of capital

equipment to the quantity of fossil energy exhibits a secular increase over the past six decades.

1Energy Information Administration, Monthly Energy Review and Our World in Data. The U.S. accounted
for about 14 percent of global CO2 emissions in 2019.

2Services have become a larger share of GDP, whose production uses less energy than producing manufactured
goods. Moreover, energy use has become more efficient, such as more fuel-efficient vehicles or more efficient
heating and cooling systems.
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Skilled and unskilled labor inputs also show differing trends, such as an increasing trend in the

skill premium (the wage of skilled labor relative to that of unskilled labor). We assume that

our technology is Cobb-Douglas over capital structures given its relatively stable factor share,

and a nested constant elasticity of substitution (CES) function of the four remaining inputs–as

such, it places no restrictions on their income shares over time and, in fact, can produce large

fluctuations in incomes shares.

We first show that an aggregate production function featuring capital equipment-energy

substitutability and energy-skill complementarity, meaning energy is more substitutable with

capital equipment than with skilled labor, can help us understand the variation in the income

share of energy in terms of observable factor inputs. This simple and explicit economic mech-

anism may have offsetting effects and may be important for understanding the historical trend

in the factor share of energy.

We then estimate the parameters of the production technology by minimizing the distance

between several model-implied variables and their data counterparts, such as the labor share

or the energy share of income. Using income shares to help choose production technology

parameters is a standard approach in the business cycle and growth literature; see, for example,

Prescott (1986). We then construct factor prices given the time-series data on inputs and

marginal products from the estimated production function. Using these prices and observable

factor inputs, we form variables from the model, including the income share of energy, and

compare the model predictions with those in the data.

We find that the key substitution elasticities are consistent with capital-energy substitutabil-

ity and energy-skill complementarity. Our model successfully captures the long-run trend of the

energy share. It also maintains consistency with the behavior of the U.S. labor market trends

and the returns on physical capital over time. To gain further insight into the evolution of

the energy share, we consider a historical decomposition, revealing that capital-energy substi-

tutability and energy-skill complementarity are important in driving the historical trend in the

energy share, but capital-energy substitutability seems particularly important. For example,

the enormous rise in the stock of equipment capital over the past six decades appears to have

prevented a larger share of U.S. income from being directed to energy use.

The large short-run fluctuations in the energy share seem to be mostly driven by the changes

in energy prices. Exploring global patents data, we show that the global share of low-carbon

patents moves closely with energy prices, providing evidence for innovations induced by energy

price shocks. Motivated by this finding, we look into time-varying substitutability between

capital equipment and energy. We show that substitutability between capital equipment and

energy has increased significantly since the mid-1970s, coinciding with higher average energy

prices as well as higher average clean patent shares relative to the mid-1970s. Thus, energy-
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saving technological progress—due to rising energy prices—may simply be serving as a proxy

for capital-energy substitutability.

Once we relax the assumption of constancy and take into account the dynamic interchange-

ability between capital equipment and energy over time, coupled with plausible differences in

substitution elasticities, the observed factor quantities can then adequately explain the fluc-

tuations in the U.S. income share attributed to energy from 1963 to 2019. Our model with

time-varying substitution between capital equipment and energy not only presents a reasonable

mechanism to interpret energy-saving technical change (for example, Hassler et al. (2021)),

but it also underscores the significance of the substitution possibilities between energy and

non-energy inputs as permitted by the production technology. These insights are important for

understanding U.S. energy reliance and can help contribute to an informed discussion regarding

energy intensity and the design of policies aimed at mitigating climate change.

To investigate the extent to which the economy can reach environmental targets, we extend

our five-factor baseline model to a six-factor production function with non-fossil energy as an

alternative energy source. As a key factor influencing carbon emissions, our focus is on the

implications of our extended model for the (fossil) energy intensity of output, particularly in

the context of targets established in the globally embraced Paris Agreement. Our model, un-

der a set of assumptions, projects a decline of about 50 percent in U.S. fossil energy intensity

from its 2005 level by 2030, which aligns with current climate-related objectives. Achieving

near-zero intensity, according to our analysis, may take several more decades. Thus, our inves-

tigation demonstrates the feasibility of meeting the 2030 target, while reaching the longer-term

2050 goal might involve additional considerations, such as further acceleration in equipment-

specific technological advancements. Our findings highlight that substitution is an important

channel and integrating the (dynamic) substitutability between equipment capital and energy

into designing climate policies could be relevant. Furthermore, we show that changes in the

equipment capital stock could play an important role in affecting the economy’s fossil energy

intensity and, hence its carbon intensity, aligning with objectives of current U.S. policies like

the Inflation Reduction Act (IRA), which focuses on historic investments to address climate

change.

1.1 Relation to the Literature

A key motivation behind this paper is the recent literature on climate change and technical

change where fossil energy is in focus (for example, Atkeson and Kehoe (1999), Acemoglu

et al. (2012), Fried (2018), Hassler et al. (2021), Casey (2023)). In a closely related paper,

Hassler et al. (2021) evaluate the path for fossil energy saving in the aggregate economy using
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a theory of directed technical change. They show that a rise in energy-saving technical change

during persistently increasing fossil prices mitigate a long-run increase in its income share. Our

focus is on substitution. We provide a simple, explicit economic mechanism for understanding

energy-saving technical change in terms of observed factor quantities, and show that with time-

varying capital equipment-energy substitutability, changes in observed inputs alone can account

for most of the variations in the income share of energy over the past 60 years. In essence,

similar to Krusell et al. (2000) providing an interpretation of skill-biased technical change a

là Katz and Murphy (1992), we provide an interpretation of directed technical change toward

energy use and argue that energy-saving technical change may simply be serving as a proxy for

omitted capital equipment-energy substitutability. Bringing disaggregated input data and their

very different growth rates into the picture along with energy, carefully considering how those

different inputs can interact with each other, and focusing on how much changes in observed

input quantities can deliver, we show that increasing substitutability between capital equipment

and fossil energy since the mid-1970s coincides with rising fossil prices and global clean patent

share.3 As such, the rapid growth in the stock of capital equipment seems to have prevented a

larger income share of energy and can be a crucial factor for lowering the energy intensity and

hence the carbon intensity of the economy.

We also contribute to the theoretical and empirical literature on input elasticities (for ex-

ample, Berndt and Wood (1975), Griffin and Gregory (1976), Pindyck and Rotemberg (1983),

Kim and Loungani (1992), Atkeson and Kehoe (1999), León-Ledesma and Satchi (2019), Has-

sler et al. (2021)). We explore different functional forms and estimate substitution elasticities

that fit disaggregated U.S. data in the long-run using different methods. Our elasticity esti-

mates are in line with the literature highlighting capital-skill complementarity (for example,

Ohanian et al. (2023)). Capital equipment and energy are complements in the short-run and

substitutes in the long-run, overall in line with the assessment of a higher long-run elasticity

between energy and non-energy inputs.4

The derived demand for inputs including energy depends on substitution possibilities among

inputs allowed by the production technology. Hence, elasticities between energy and non-energy

inputs are critical for the quantitative climate economy literature, where elasticities considered

are generally based on aggregate data. Studies often assume energy is combined with capital

and labor in a Cobb-Douglas production function (for example, Golosov et al. (2014), Barrage

(2020)), which seems consistent with long-run data on energy use and prices but not with

short-run data (Atkeson and Kehoe (1999), Hassler et al. (2021)). Casey (2023) shows that the

3Popp (2002) provides micro evidence on the effect of energy price changes on the direction of R&D.
4Building on Polgreen and Silos (2008), Polgreen and Silos (2009) investigate the relationship between oil

prices and the skill premium. They explain the negative correlation between the two by short-run capital-energy
complementarity.
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standard Cobb–Douglas production function used in the environmental macroeconomics litera-

ture overstates the reduction in cumulative energy use that can be achieved with an exogenously

given environmental target based on the Paris Agreement. Our paper contributes to this lit-

erature by providing a structural interpretation of disaggregated data based on estimates of

substitution elasticities and by highlighting the importance of substitution, in particular taking

into account capital equipment-energy substitutability, when designing climate policy.5

The paper is organized as follows. In Section 2, we discuss quantity and factor price data

we use in our analyses. In Section 3, we present the basic model. In Section 4, we describe the

quantitative methodology. In Section 5, we present our results. In Section 6, we conclude by

describing some implications of the results. In the Appendix, we present the construction of

the data and additional results.

2 Data

We focus on the U.S. economy and review the changes in the prices and quantities of capital,

labor, and energy inputs using annual data from 1963 to 2019.6 Details on the data and

construction of the variables can be found in the Appendix. Starting with fossil energy, we

consider three types of fossil fuels: coal, crude oil, and natural gas. We obtain an accompanying

real price index, Pt, and define the energy share as EtPt/Yt, where Et is energy use and Yt is real

GDP net of the net export of fossil fuels.7 As shown in Figure 2.1, the income share of energy

has fluctuated between 1 and 8 percent without a clear long-run trend. It increases considerably

after the first oil shock, then falls dramatically in the 1980s. The energy share then remains

low and relatively stable in the 1990s before increasing again in the 2000s and then exhibiting

another dramatic fall in the mid-2010s. In contrast, real price of energy shows an increasing

trend. Yet, the price and the income share of energy strongly and positively comove.

We consider two types of capital (structures and equipment), as their prices relative to

consumption and their stock levels have grown at strikingly different rates. Capital equipment

includes intellectual property products, as is standard in the literature. The top-left panel

of Figure 2.2 shows that the relative price of equipment capital has fallen significantly since

the early 1960s, while the relative price of structures has remained relatively stable over this

5In a recent paper, Moll et al. (2023) highlight the importance of substitution in reducing the economic
impact of a large input supply shock, namely the German cut-off from Russian gas. Our work emphasize the
significance of this channel for addressing climate change.

6The start of our time frame is constrained by the CPS data we use to construct the labor inputs.
7Our approach in constructing the energy use series is similar to that of Hassler et al. (2021). Output here can

be interpreted as GDP minus the value of energy use outside of domestic production. Due to lack of consistent
data on household use of energy as a final good, which is small compared with the total, we set household use
to zero.
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Figure 2.1: Income Share of Fossil Energy and Real Price of Fossil Energy

period. This long-run decline in the relative price of equipment capital can be interpreted as the

equipment-specific technological progress; see, for example, Greenwood et al. (1997). Consistent

with this substantial equipment-specific technological change, the stock of capital equipment

rose to a level about 80 times that of its 1963 level by 2019, while the stock of structures grew

to a level only about 5 times that of its 1963 level, the top-right panel of Figure 2.2.

We also look into the ratio of the quantity of capital equipment to the quantity of fossil

energy input. The middle panel of Figure 2.2 shows that this ratio exhibits a secular increase

over the past six decades. As we will show, this ratio is important in our analysis, since it

affects the trends in the income share of energy through capital-energy substitutability.

We also differentiate between two types of labor (skilled and unskilled), and define skill

on the basis of college degree attainment, as is standard in the literature. We distinguish

between labor types because the two types of labor also show differing trends and potentially

have different interactions with the energy input. While there is a continuous increase in skilled

labor input relative to unskilled labor input, the skill premium -the wage of skilled labor relative

to that of unskilled labor- increased by about 50 percent since the early 1960s, as shown in

the bottom-left panel of Figure 2.2.8 Note that as a consequence of rising skilled labor input

8Many studies examine why the skill premium has risen during a period with significant growth in the relative
supply of skilled labor, and argue that skill-biased technological change must be an important factor (e.g. Katz
and Murphy (1992), Acemoglu (2002)). Krusell et al. (2000), on the other hand, address this question on the
basis of observables and through capital-skill complementarity. McAdam and Willman (2018) nest these two
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Figure 2.2: Stock and Prices of Capital Equipment and Structures, the Ratio of Capital
Equipment to Energy, Skill Premium, and Gross Labor Share
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and the relative wage of this labor type, the income share of skilled labor exhibits a secular

increase over the past six decades. As we will discuss later, this share also helps us understand

the trends in the income share of energy.

Finally, the bottom-right panel of Figure 2.2 shows the share of income earned by aggregate

labor, which is defined as the ratio of labor income (wages, salaries, and benefits) to the sum

of labor income plus capital income (depreciation, corporate profits, net interest, and rental

income of persons). It presents a declining trend, one of the striking features of the recent U.S.

economy that has been widely discussed in the literature.9

We interpret these data from the perspective of a production function for aggregate domestic

output that has five inputs. In the next two sections, we first develop such a framework and

then estimate the model on the U.S. data presented here.

3 Baseline Model

We build on the work of Krusell et al. (2000) by introducing fossil energy as a factor of produc-

tion. We focus on the aggregate production function and abstract from modeling the household

sector for simplicity. Our approach involves developing a five-factor production function and

estimating the parameters of that particular production technology by minimizing the distance

between several model-implied variables and their data counterparts. We then construct factor

prices given the time-series data on inputs and marginal products from the estimated produc-

tion function. Using these prices and observable factor inputs, we form variables from the

model, including the income share of energy, and compare the model predictions with those in

the data.

Our neoclassical production technology for the U.S. economy, Yt, has constant returns to

scale and distinguishes between equipment capital (Keq,t) and structures capital (Ks,t), as well

as skilled (Ls,t) and unskilled labor inputs (Lu,t), and it includes fossil energy (Et). The very

different paths of the quantities and relative prices of these variables presented in the previous

section motivate these distinctions. Furthermore, we allow for, but do not impose, different

substitution possibilities between inputs.

There are three final goods in this economy: consumption, structures investment, and equip-

ment investment. Consumption and structures are produced with a constant returns-to-scale

technology, and their prices are normalized to 1.10 Equipment is produced with the same tech-

explanations, skill-biased technical change and capital-skill complementarity, using a multiequation production
and technology system.

9Some recent work on this topic includes Orak (2017) and Glover and Short (2020), among many others.
10This is a reasonable assumption because the relative price of structures has not changed much during the

period of this study, as shown in the previous section.
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nology scaled by equipment-specific productivity, qt. With perfect competition, we have the

relative price of equipment capital equal to 1
qt
. So we consider the relative price of equipment

capital as the (inverse) proxy for technological progress, a common interpretation in the liter-

ature. Under these assumptions, aggregate resource constraint ensures that aggregate output,

Yt, equals total spending on consumption and investments on structures and equipment.

We must first choose a functional form for the production function that represents the U.S.

economy. To simplify and given capital structures’ relatively stable factor share, we assume

that our technology is Cobb-Douglas over capital structures and a CES function of the four

remaining inputs. One can nest Keq,t, Ls,t, Lu,t, and Et within a CES function in different ways.

In determining a baseline specification, we follow a meticulous approach: Compare model fits

of data for several different specifications and choose the one that yields the best joint fit for

a set of target variables—the skill premium, the labor share, and the energy share. We will

present and discuss our model and estimation approaches in detail later in the paper, but the

following is worth mentioning. First, these target variables describe important features of the

U.S. economy (as presented earlier). Second, the model counterparts of the target variables

are obtained using the firm’s first-order conditions for factors of production. Note that we use

generalized method of moments (GMM) to estimate the parameters of the production functions

presented below.

More specifically, we consider four different nested-CES functions combining Keq,t, Ls,t, Lu,t,

and Et in different ways. The far left column in Table 3.1 presents the specifications we consider

in functional forms. For example, one specification (specification I) combines the energy input

with capital equipment first, which we call capital-energy services. Capital-energy services are

then combined with skilled labor, which is then combined with unskilled labor with different

elasticities of substitution between equipment capital and energy, between skilled labor and

capital-energy services, and between unskilled labor and the combined output of capital-energy

services and skilled labor. Another specification (specification II) combines the energy input

with unskilled labor in a CES composite and skilled labor and equipment capital in another

CES composite. These two CES composites are then combined with different elasticities of

substitution between unskilled labor and energy, between equipment capital and skilled labor,

and between those two composites.11

The four columns in Table 3.1 present the normalized root mean squared errors (NRMSEs)

for the three target variables as well as the total NRMSEs under these specifications. As shown

in the table, specifications I and II stand out with lower total NRMSEs (of around 0.5) than

specifications III and IV, leading us to eliminate specifications III and IV. To make a more

11Note that we considered all potential nestings and chose to present those four specifications, as the others
yielded inconsistent, not well-defined elasticities.
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informed decision in choosing between specifications I and II, we also look at the time-series

model fits of those specifications against their data counterparts, presented in Figure A.1 in the

Appendix. Together, Table 3.1 and Figure A.1 suggest that both specifications have a similar

fit for the skill premium. While specification I fits the labor share slightly better, specification

II has a better fit for the energy share. Overall, these suggest that specifications I and II are

similarly successful in fitting the data. However, specification II turns out to be statistically

unstable, as it computationally struggles to identify the elasticity parameter between unskilled

labor and energy inputs.12 Specification I, by contrast, gives stable estimates. As a result, we

choose specification I as our baseline technology.13

Table 3.1: Normalized RMSEs for the Skill Premium, the Labor Share, and the Energy Share
Resulting from Different Production Technology Specifications

Technology Specification Skill Premium Labor Share Energy Share Sum

I. Y = H1(Kst, g1[U, f1(h1(E,Keq), S)]) 0.041 0.023 0.454 0.518
II. Y = H2(Kst, g2[f2(U,E), h2(Keq, S)]) 0.041 0.028 0.399 0.468
III. Y = H3(Kst, g3[S, f3((h3(Keq, E)), U)]) 0.460 0.090 0.794 1.344
IV. Y = H4(Kst, g4[U, f4(Keq, h4(S,E))]) 0.155 0.049 0.801 1.005

Note: Hi denotes a Cobb–Douglas function that combines capital structures with the remaining four inputs
in different nestings. gi, fi, and hi represent CES nestings of the enclosed inputs, for i ∈ {1, 2, 3, 4}. RMSE
stands for the root mean squared error, and normalized RMSE is the RMSE divided by the mean value of the
corresponding variable.

The baseline specification is also very intuitive and interpretable. One can interpret this

type of production technology along the lines of Goldin and Katz (1998) as follows. Production

takes place in three stages. In the first stage, new technologies (or new equipment) adopt

to work with energy efficiently in the firm. In the second stage, skilled workers adopt those

new technologies and ensure that they work efficiently. The third and final stage consists of

maintenance and the more mechanical part of the production process that involves unskilled

labor.

Now, we can introduce the baseline technology for our analysis:

Yt = AtG (Ks,t, Keq,t, Et, Lu,t, Ls,t)

= AtK
α
s,t

[
µLσu,t + (1− µ)

(
λ[ξKν

eq,t + (1− ξ)Eν
t ]

ρ
ν + (1− λ)Lρs,t

)σ
ρ

] 1−α
σ
, (3.1)

12In this specification, the energy-related parameters are statistically insignificant and the estimates are highly
sensitive to adding a few years of observations or changes in initial points.

13We also compared baseline model results with a model in which capital and labor are aggregate. In that
case, not only did model fit get worse too, but also we could no longer explain certain features of the U.S.
economy, such as the increasing wage inequality.
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where At is neutral technological change at time t. In this specification, µ, λ, and ξ are

parameters governing income shares. σ, ρ, and ν govern elasticities of substitution between

different factors of production, and are restricted to lie in (−∞, 1) to maintain strict quasi-

concavity of the production function. We define the elasticity of substitution between equipment

capital and energy input as 1
1−ν , the elasticity of substitution between skilled labor and capital-

energy services as 1
1−ρ , and the elasticity of substitution between unskilled labor and composite

output of capital-energy services and skilled labor as 1
1−σ .

14 Note that when either of σ, ρ, or

ν is zero, their corresponding nesting is Cobb–Douglas. Finally, Ls,t and Lu,t are skilled and

unskilled labor inputs in efficiency units, respectively. They are combinations of raw labor

hours, hs,t, hu,t, and efficiencies as follows:

Ls,t = hs,te
φs,t

Lu,t = hu,te
φu,t ,

where φs,t and φu,t denote (unmeasured) efficiencies of skilled and unskilled labor, respectively.

3.1 The Income Share of Energy

We can now use the model to examine how the income share of energy and factor inputs are

related.

Given that factor prices are equal to marginal products, one can express the ratio of the

income shares of skilled labor and energy as follows:

Ls,share,t
Eshare,t

=
ws,ths,t
pE,tEt

=
GLs,ths,t

GE,tEt
,

where Ls,share and Eshare are the income shares of skilled labor and energy and GLs and GE

are the marginal products of skilled labor and energy, respectively. Then, the model-implied

energy share can be expressed as a function of the input ratios, the income share of skilled

labor, and the technology parameters:

Eshare,t =
λ(1− ξ)

(1− λ)

(
Et
Ls,t

)ρ(
ξ

(
Keq,t

Et

)ν

+ (1− ξ)

) ρ−ν
ν

Ls,share,t. (3.2)

In Section 2, we present that input ratios have shown significant trends over the past six

decades. In this context, equation 3.2 shows how changes in input ratios can affect the income

share of energy. An increase in the abundance of skilled labor relative to energy use, ceteris

14There are other ways of defining elasticities between inputs. The definition we consider here assumes that
no other factors change except the pair of factors considered.
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paribus, would increase the income share of energy if and only if ρ < 0, which implies (absolute)

complementarity between skilled labor input and capital-energy services. Moreover, an increase

in the stock of equipment capital relative to energy use, ceteris paribus, would lead to a rise

in the energy share if and only if ρ > ν. Finally, the energy share is increasing in the income

share of skilled labor for all admissible parameter values.

To further illustrate the implications of our model for the energy share, we log-linearize

equation 3.2 and then differentiate with respect to time. After some algebra, we obtain15

gEshare,t
≃ ρ(gE,t − gψs,t − ghs,t)︸ ︷︷ ︸

energy-skill complementarity effect

+ (ν − ρ)ξΓ
(
gE,t − gKeq ,t

)︸ ︷︷ ︸
capital-energy substitutability effect

(3.3)

+ gLs,share,t︸ ︷︷ ︸
skilled labor share effect

,

where gx,t denotes the growth rate of variable x at time t. Equation 3.3 gives us a simple way to

use our model to understand how changes in factor quantities and substitution elasticities affect

the income share of energy. The first term, ρ(gE,t− ghs,t − gψs,t), depends on the growth rate of

skilled labor in efficiency units relative to the growth rate of energy use. The relatively faster

growth of skilled labor in efficiency units can increase the energy share if and only if ρ < 0. So we

call this term the energy-skill complementarity effect. The second term, (ν−ρ)ξΓ (gE,t − gKeq,t),

is the capital-energy substitutability effect. It involves the growth in equipment capital relative

to the growth of energy use. If ν > ρ, energy is more substitutable with equipment capital

than is skilled labor. In this case, faster growth in equipment tends to lower the growth of

energy share as it lowers the relative demand for energy. Finally, gLs,share
, is the growth rate of

skilled labor share. An increasing skilled labor share increases the energy share. We call this

component the skilled labor share effect. Given the large increase in the stock of equipment

capital relative to energy use and the secular increase in skilled labor share we observe in

the U.S. data, the latter two channels may have offsetting effects on the U.S. energy share if

ν > 0 > ρ.

To summarize, we provide a simple and explicit economic mechanism that can account for

the variation in the income share of energy in terms of observable factor inputs. It allows us

to evaluate the role of substitution elasticities and investigate whether we maintain consistency

with other important characteristics of the U.S. economy as well.

15Here, Γ =
(
ξ + (1− ξ)

(
Ē

K̄eq

)ν)−1

is a constant term, where K̄eq and Ē are average values of equipment

capital and energy input, respectively.
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4 Quantitative Analysis

4.1 An Initial Exploration of the Importance of Substitution

We can use equation 3.3 to quantitatively assess how the relative input use and the substitution

between energy and other inputs have affected the income share of energy. As an initial analysis,

we consider two experiments designed to address the importance of substitution in explaining

the changes in the energy share. We compare the energy share in the data with the energy

share in the model for particular values of the production function parameters. To examine the

extent to which observable variables can account for changes in the energy share, we assume

the unmeasured quality of the two types of labor, ψu, ψs, to be constant (they are normalized

to one) in these experiments.

The first experiment asks the following question: What would have happened to the energy

share over 1963 to 2019 if there were no capital-energy substitutability and no changes in

unmeasured labor quality? Such an experiment requires substitution elasticities between capital

equipment and energy and between skilled labor and capital equipment to be the same. So, we

consider the following simplified version of the production function:

Yt = Kα
eq,t

[
λEν

t + (1− λ)Lνs,t

] 1−α
ν
. (4.1)

We only need to assign a value to the curvature parameter ν, which governs the elasticity

between skilled labor and energy, as the other parameters do not appear in the energy share

expression. One strategy is to use existing elasticity estimates. However, existing estimates

of elasticities of substitution between energy and labor are based on measures of total labor.

So we consider estimates for aggregate labor from the literature to parameterize our model

as a good starting point. Our goal is to determine whether capital-energy substitutability

appears to be quantitatively important for understanding variations in the energy share based

on substitution elasticities broadly in line with existing estimates. In this context, we assume

an elasticity of about 1.18 (that is, ν = 0.15) between energy and labor, which is consistent with

the estimates presented in Griffin and Gregory (1976) or Hassler et al. (2021) on the long-run

elasticity of substitution between energy and labor. The energy share predicted by version 4.1

of our production function then exhibits an increasing trend caused by a rise in skilled labor,

in contrast with the actual energy share.16 This suggests that capital-energy substitutability

can be an important mechanism in accounting for changes in the income share of energy.

To explore the importance of the energy-skill complementarity mechanism, our second ex-

periment asks: What would have happened to the energy share if there were no energy-skill

16Results are available upon request.
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complementarity? We continue to focus on the effects of the observables and hence maintain

the assumption that unmeasured labor qualities of the two types are constant. This experiment

requires substitution elasticities between skilled labor and energy and between skilled labor and

capital equipment to be the same. So, this time, we work with the following simplified version

of the production function:

Yt = Lαs,t

[
λEν

t + (1− λ)Kν
eq,t

] 1−α
ν
. (4.2)

Now, we need to choose values for two parameters to make inferences about the energy

share: the elasticity of substitution between capital equipment and energy, ν, and the share

parameter, λ. Again, existing estimates of elasticities of substitution between capital and

energy are based on measures of total capital. So we consider an estimate for the elasticity of

substitution between aggregate capital and energy to parametrize our model. We choose the

share parameter λ to match the average energy share of income over the entire sample, resulting

in a value of 0.01 for ν. It implies that the elasticity of substitution between capital and energy

is 1.01, a slight departure from a Cobb-Douglas specification, which is overall consistent with

the estimates on the long-run elasticity of substitution between capital and energy; see, for

example, Hassler et al. (2021).17 The energy share predicted by version 4.2 of our production

function exhibits an upward trend over our time period, again contrary to the actual data.

These two simple experiments suggest that changes in observables, operating through capital-

energy substitutability and energy-skill complementarity mechanisms, can help account for the

historical changes in the energy share. Here, we focus only on the model’s ability to explain the

energy share by relying on estimates of elasticities based on aggregate capital and aggregate

labor from existing studies. In the next subsection, we estimate our model to obtain elasticities

and examine whether our baseline production function can account for changes in the energy

share while maintaining consistency with other important U.S. growth observations, which

are frequently used to calibrate aggregate production functions in macroeconomics—namely, a

declining labor share, an increasing wage-bill ratio, and reasonable rates of return on capital.

17Note that studies differ across several dimensions, affecting results: functional forms they consider, esti-
mation techniques they use, and data and time periods they consider. We examine values that are generally
consistent with the estimates presented in the literature. We also ran these experiments with the short-run
elasticities of substitution between aggregate labor and energy and between aggregate capital and energy. For
short-run elasticities, studies generally suggest substitutability between the former pair but strong complemen-
tarity between the latter pair (see, for example, Berndt and Wood (1975)). In that case, we found that the
predicted path of the energy share also exhibited an increasing trend in both experiments, but the difference
between the two series was more stark with a more muted increase in the former experiment and a sharper
increase in the latter experiment.
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4.2 Estimation of the Baseline Model

To estimate the parameter values of the baseline production technology, presented in equa-

tion 5.1, we primarily use the simulated pseudo maximum likelihood estimation (SPMLE) pro-

cedure to maintain comparability of our results with those of Krusell et al. (2000) and Ohanian

et al. (2023).18 We also use GMM to estimate the parameters as a robustness check.19

For the SPMLE methodology, we need to specify two stochastic elements to close the model

and ensure that the likelihood is non-singular. The first stochastic element is the relative price

of equipment capital, which affects the rate of return on equipment investment, and the second

one is the (unobserved) efficiencies of the skilled and unskilled labor. Note that in our partial

equilibrium framework, the firm treats energy as a contemporaneous input like labor, hence

we do not specify a stochastic process for the price of energy. To specify the first process, we

consider a “no arbitrage” condition that sets the expected net rate of return on investment in

structures equal to that on investment in equipment:

At+1Gst,t+1 + (1− δst,t+1)︸ ︷︷ ︸
expected return on structures

= qtAt+1Geq,t+1 + (1− δeq,t+1)E

(
qt
qt+1

)
︸ ︷︷ ︸

expected return on equipment capital

. (4.3)

Structures and equipment capital depreciate at time-varying rates δst,t and δeq,t, respectively,

whose paths are assumed to be known by the firm. Gst,t+1 and Geq,t+1 denote the marginal

products of structures and equipment capital at time t+1, respectively. At+1 is the neutral total

factor productivity at time t+ 1, which can be identified simply as a residual given the output

from data and model parameters and observed inputs as follows: Yt+1

G(Kst,t+1,Keq,t+1,Et+1,Lu,t+1,Ls,t+1)
.

Finally, following Krusell et al. (2000), and to simplify the estimation, we assume that there

is no risk premium, tax treatments for these two types of capital are the same, and (1 −
δeq,t+1)E

(
qt
qt+1

)
= (1 − δeq,t+1)

qt
qt+1

+ εt, where εt is assumed to be normally distributed with

mean zero and variance σ2
ε .

20

The second stochastic element is the (unobserved) efficiencies of the skilled and unskilled

18A complete description of this estimation methodology is outside the scope of this paper. Interested readers
are referred to Ohanian et al. (2000) and Krusell et al. (2000) for detailed descriptions of the methodology. For
an alternative procedure, see Polgreen and Silos (2008).

19GMM is flexible in terms of model target selection and relatively simple in terms of implementation. Unlike
the SPMLE methodology, it does not require the full likelihood of the model and allows us to estimate modified
versions of the baseline production technology or to estimate the baseline model with alternative targets, and it
does not require specifying stochastic components. That said, as we show later, the SPMLE and GMM method-
ologies produce very similar estimates, suggesting estimation techniques are unlikely to drive any differences in
results.

20Krusell et al. (2000) explore the implications of the tax treatments assumption by constructing different
tax measures for both capital types and applying those rates to equation 4.3. They report that their results
remained very similar.

15



labor. We assume that φs,t and φu,t follow

φi,t = φi,0 + ωi,t, (4.4)

where i = s, u. φs,0 and φu,0 correspond to average log levels of efficiencies for skilled and

unskilled labor, and ωs,t and ωu,t are labor efficiency shocks for skilled and unskilled labor,

respectively. We assume that these shocks have a multivariate normal distribution with zero

mean and covariance matrix Ω =

[
η2ω 0

0 η2ω

]
where η2ω is the common variance. Given that we

focus on whether changes in observable variables can account for trend changes in the energy

share, for comparability with related studies and to keep the number of estimated parameters

reasonable, our baseline specification has no trend variation in labor quality of the two types.21

Now, we can describe the rest of the model equations to be estimated along with the es-

timation process. The estimation is done in three steps. In the first step, we only estimate

energy-related parameters: the weight parameter, ξ, and the parameter governing the substitu-

tion elasticity between energy use and equipment capital, ν. The reason is that these parameters

can be estimated by ordinary least squares (OLS) using a simple structural relationship that is

based on income shares implied by the firm’s first-order conditions for renting equipment capital

and using energy. Note that using income shares to choose production technology parameters

is a standard approach in macroeconomics; see, for example, Prescott (1986). More specifically,

we use

req,tKeq,t

pE,tEt
=

ξ

1− ξ

(Keq,t

Et

)ν
, (4.5)

where req,t = AtGKeq,t is the rental rate on equipment capital and pE,t = AtGEt is the price of

energy input, with Gi,t denoting the marginal product of input i at time t. Using equation 4.5

to estimate the energy-related parameters reduces the burden of estimation with a large number

of parameters and slightly improves the model fit for the income share of energy.22 Namely, we

take the log of equation 4.5 and estimate it using OLS.23 The resulting estimated regression is

21Alternatively, we could allow for trend changes to efficiencies of both labor types. When trend changes are
allowed, we obtain a much smaller degree of capital-skill complementarity, because skill-biased technological
change plays an important role in accounting for rising income inequality (see, for example, Katz and Murphy
(1992)). However, Krusell et al. (2000) and Orak (2017) argue that the estimated difference between trend
growth rates of skilled and unskilled labor quality is implausibly large in this case, which is hard to justify given
that the efficiency of labor is not measurable.

22One could also estimate ν and ξ along with the rest of the parameters considering the energy share as the
fourth targeted moment, which corresponds to specification I in Table 3.1. However, estimating ν and ξ by
exploiting the simple relationship between the income shares presented in equation 4.5 improves the model fit
of the energy share by about 13 percent, reducing the normalized RMSE of this variable from 0.454 to 0.394.

23Polgreen and Silos (2009) follow a similar approach. The construction of the series used in the regression is
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as follows:

̂
ln
re,tKe,t

pE,tEt
= 1.7301 + 0.0555 ln

Ke,t

Et
, (4.6)

(.1081) (.0465)

where the values in parentheses are standard errors. It yields ξ = 0.8494 and ν = 0.0555

in the inner CES between equipment capital and energy use. In other words, the elasticity

of substitution between equipment capital and energy is 1.06, which implies slightly more

substitutability than the Cobb-Douglas case, consistent with the long-run estimates of the

elasticity of substitution presented in the literature, as noted in the previous subsection.24

However, with a p − value of 0.238, ν is statistically not different from zero, suggesting that

the Cobb-Douglass case cannot be ruled out.

In the second step, we regress both types of labor inputs and energy use on the current

and lagged stocks of both types of capital, the lagged relative equipment capital price, a time

trend, the lagged price of energy, and the lagged value of a leading business cycle indicator of

the Conference Board. The purpose of this stage is to control for the possible dependence of

supplies of labor inputs and energy use on general macroeconomic shocks. We then use the

fitted values from these regressions in the third SPMLE step. However, when assessing the

model fit, we use actual (non-instrumented) labor and energy inputs to investigate how much

of the changes in the energy share and other macroeconomic variables can be explained by

observed variables.

The third step relies on choosing a set of parameters that minimize the distance between

data and model outcome for a number of targeted variables. We use three targets: the wage-bill

ratio, which is the ratio of income share of the skilled labor input to that of unskilled labor,

the gross labor share, and the no-arbitrage condition, which ensures that expected rates of

return on both types of capital are the same. We call this our baseline estimation. However,

we also consider the energy share as an alternative target replacing the labor share. In this

described in the Appendix.
24One might question whether the substitutability between capital equipment and energy is driven by the

relationship between capital equipment and inputs other than energy, given the substantial accumulation of
capital equipment over the past few decades. To address this concern, we ran regressions similar to equation 4.5
for equipment capital against other factors of production as a robustness check. Our findings indicate that capital
equipment is weakly substitutable with structures, complementary with skilled labor, and strongly substitutable
with unskilled labor, with elasticity estimates of 1.1, 0.8, and 1.3, respectively. This exercise suggests that the
substantial rise in equipment capital does not necessarily imply its long-run substitutability with all remaining
inputs. Therefore, we do not believe that the relationship between equipment capital and energy input is solely
driven by the relationship between equipment capital and non-energy inputs. That being said, it would be
interesting to explore cross-industry data to further investigate the substitutability of energy with other inputs
in future research.
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alternative, the model fit worsened significantly, particularly for the labor share. The results for

this alternative are reported in Figure A.2 and Table A.1 in the Appendix. Facing this trade-off

and given that we prefer to obtain the energy share as a non-targeted outcome of the model

and that the production technology in equation 5.1 already allows us to estimate energy-related

parameters (ν and ξ) using a simple OLS regression, we choose to keep the labor share as one

of the targets.

We use the following three targets:

1. Wage-bill ratio:
ws,ths,t
wu,thu,t︸ ︷︷ ︸

data

= wbrt(Xt, φu,t, φs,t; Υ)︸ ︷︷ ︸
model

, (4.7)

2. Labor share:
ws,ths,t + wu,thu,t

Yt︸ ︷︷ ︸
data

= lsharet(Xt, φu,t, φs,t; Υ)︸ ︷︷ ︸
model

, (4.8)

3. No-arbitrage condition:

qtAt+1Geq,t+1 + (1− δeq,t+1)

(
qt
qt+1

)
+ ϵt︸ ︷︷ ︸

expected return on equipment capital

−{At+1Gst,t+1 + (1− δst,t+1)︸ ︷︷ ︸
expected return on structures

} = 0. (4.9)

In equations 4.7 and 4.8, the left-hand sides are data, and the right-hand sides are their

model equivalents based on income shares. They are implied by the firm’s first-order conditions

for hiring skilled and unskilled labor as a function of observable inputsXt = {Kst,t, Keq,t, hu,t, hs,t,

Et, δeq,t, δst,t}; unobservable labor efficiencies φu,t and φs,t; and a set of parameters Υ =

{σ, ρ, α, µ, λ, φu0, φs0, ηϵ, ηω}. Equation 4.7 is the ratio of earnings of skilled workers to unskilled

workers. Equation 4.8 specifies the total share of labor income defined by marginal products

from the production function. The goal is to choose the maximum value of the log-likelihood

function that will minimize the distance between left (data) and right (model) sides while also

maintaining reasonable ex-post rates of returns on the two types of capital (as targeted in the

no arbitrage condition in equation 4.9).

So the estimation of the baseline model using SPMLE consists of a non-linear state-space

model with equations 4.7 through 4.9 as the measurement equations and equation 4.4 as the

transition equation. The number of parameters to be estimated can be reduced by calibrating

some of them. We calibrate time-varying depreciation rates using the NIPA tables for the

capital stock and capital consumption. The average depreciation rate is 0.028 for structures
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and 0.148 for equipment capital. We assume that the future depreciation rates are known.25

To calibrate σε, we estimate an ARIMA model for the relative price of equipment capital and

set σε equal to (1− δ̄eq) times the standard error of the residuals of this ARIMA model. Given

that we obtained ν and ξ using OLS above, we fix their values. Finally, given that µ, λ, ξ, φu0,

and φs0 can act as scaling parameters, we choose to normalize φs,0.

All these left us with seven parameters to be estimated: σ and ρ, parameters governing the

substitution elasticities; µ and λ, parameters governing weights; α, income share of structures;

φu,0, average efficiency of unskilled labor; and η2ω, the variance of the labor efficiency shocks.

Next, we present and discuss our results.

5 Results

We estimate the parameters for the entire 1963–2019 period using SPMLE. Table 5.1 presents

these baseline estimates with asymptotic standard errors in parentheses along with the estimate

for ν, governing the elasticity of substitution between energy and capital equipment, obtained

via OLS. Our elasticities imply energy-skill complementarity (ρ < 0) and equipment capital-

energy substitutability (ν > ρ). The elasticity of substitution between capital equipment and

energy, however, suggests slightly more substitutability than the Cobb-Douglass case.

Table 5.1: Parameter Estimates, Baseline

σ ρ α ηω ν

Value 0.431 −0.363 0.094 0.248 0.056
(Std. error) (0.032) (0.040) (0.002) (0.055) (0.047)

More specifically, the estimate for the elasticity of substitution between unskilled labor

and the composite of skilled labor and capital-energy services, 1
1−σ , is around 1.76, while the

estimate for the elasticity of substitution between skilled labor and capital-energy services, 1
1−ρ ,

is about 0.73. Both estimates are consistent with the theory of capital-skill complementarity

and hence in line with the estimates reported in Ohanian et al. (2023). The income share of

capital structures, α, is also close to the value observed in the data.26 The estimate for the

elasticity of substitution between capital equipment and energy is 1.06, close to the long-run

estimate discussed in Hassler et al. (2021).

25As reported in Ohanian et al. (2023), using constant depreciation rates has no visible imprint on the results.
26Using the “Total Factor Productivity - Capital details for major sectors and industries” table of the Bureau

of Labor Statistics and our measure of total capital income share, we calculate the average income share of
structures capital for the private non-farm business sector over the period between 1987 and 2019 to be 10.6
percent.
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It is worth noting that although we use annual data, our elasticity estimates should be inter-

preted as long-run estimates. This attribute is due to the estimation methodology we employ,

which relies on minimizing the distance between the model-implied trends and their data coun-

terparts rather than exploiting year-to-year fluctuations in the data. This distinction will be

clearly seen in the results we present next, where the model misses large short-run fluctuations

in the labor share and the energy share while capturing the long-run trends reasonably well. To

be consistent with the rest of the parameters estimated, the nature of our estimate for ν is also

long term, as we do not detrend data while running the OLS regression in equation 4.6. Should

we use differenced data instead, we would obtain ν = −0.858, which implies a high degree of

complementarity between equipment capital and energy, in line with short-run estimates.27

Next, we turn to the behavior of the estimated equations in our baseline model that are

used as targets. Figure 5.1 presents the model and data equivalents of the ratio of earnings of

skilled workers to unskilled workers (the wage-bill ratio) and aggregate labor’s share of income,

along with the ex-post rates of return on equipment and structures computed from our model.

The model statistics are generated by setting the i.i.d. shocks to labor quality to zero at every

t, meaning the fluctuations in the model’s predictions are entirely due to changes in observable

inputs. First, the predictions of the estimated baseline model are broadly in line with the data.

The model is able to capture the behavior of the wage-bill ratio. It is broadly consistent with

the declining labor’s share of income, despite being a bit smoother than the data. Overall,

our model is consistent with the U.S. labor market trends. Second, the model’s predictions for

capital variables are also reasonable. For example, our estimates for the ex-post returns are

in line with Marx et al. (2021), reporting an increasing return on U.S. productive capital from

around 6 percent in the early 1980s to around 12 percent in post-2015. Note that the rate of

return is more volatile for equipment than that of structures because of unexpected changes in

the relative price of equipment.

Now, we move to the model predictions for the variables not directly targeted in the esti-

mation: the income share of energy and the ratio of energy price to skilled wage. The latter

ratio is of interest because the relationship between energy and skilled labor affects the course

of the energy share, as discussed in Subsection 3.1. Driven entirely by the changes in observed

factor quantities, our model successfully mimics the sharp decline in the ratio of energy price

to skilled wage until the mid-1970s and the subsequent rise until the early 1980s (Figure 5.2,

right panel). While it fails to generate the large drop in the early 1980s, the model can capture

the overall secular decline since the 1980s despite not directly targeting the ratio of energy

27The short-run elasticity estimate we obtained using differenced data is consistent with Polgreen and Silos
(2009), who report strong complementarity between equipment capital and energy, and with the short run
estimate of Hassler et al. (2021), who present close to perfect complementarity between energy and a composite
of aggregate capital and labor.
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Figure 5.1: Baseline Model’s Predictions for Targeted Variables, 1963–2019
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price to skilled wage. With respect to the income share of energy, presented in the left panel of

Figure 5.2, the model fails to capture the large short-run swings in the energy share. However,

it successfully captures the long-run trend of the energy share.

Figure 5.2: Baseline Model’s Predictions for Not Directly Targeted Variables, 1963–2019

The income share of energy is a primary object of interest in this paper. To gain further

insight into the behavior of the energy share, we use our model and consider a historical

decomposition. Recall that in Subsection 3.1, we decompose the growth of the energy share

into three components, defined as the capital-energy substitutability effect, the energy-skill

complementarity effect, and the skilled labor share effect. Based on this decomposition, we

reconstruct how these three channels have affected the income share of energy from 1963 to

2019. The results are presented in the left panel of Figure 5.3 in log units, where the sum of

the three components gives the log of the model-implied energy share shown by the solid black

line.

In Figure 5.3, the dotted orange line shows that the energy-skill complementarity effect

exerts a positive effect on the energy share throughout the sample, because the skilled labor

input grew faster than the energy input and these two factors are complementary. However,

this channel is relatively stable, meaning it plays only a modest role in driving the long-run

movements of the energy share. Meanwhile, the other two channels seem to have larger and

offsetting effects on the energy share. On the one hand, given the secular trend rise in the income

share of skilled labor, the energy share tends to increase (the skilled labor share effect, dashed

blue line). On the other hand, given that the substitutability between energy and equipment

capital is larger than that between capital-energy services and skilled labor (ν > ρ) and that

equipment capital and energy are absolute substitutes (ν > 0), the enormous equipment-specific

technological progress, coupled with the rise in the income share of equipment capital, depresses
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the income share of energy (capital-energy substitutability effect, dashed-dotted purple line).

Although these two effects seem to largely offset each other, making the long-run trend of the

energy share look relatively stable, the capital-energy substitutability effect overall dominates,

resulting in a slight decline in the income share of energy.

Figure 5.3: Historical Decomposition of the Model-Implied Income Share of Energy (left
panel) and Counterfactual Experiments Shutting the Three Mechanisms One by One (right

panel), 1963–2019

Note: In the right panel, the solid black line shows the baseline model’s prediction for the income share of
energy using actual data for all factor inputs. The first counterfactual (Cf1) shows the model’s prediction under
the assumption that energy and skilled labor grow at the same rate. The second counterfactual (Cf2) shows
the model’s prediction when the income share of skilled labor remains unchanged at its 1963 level. The third
counterfactual (Cf3) shows the model’s prediction when ν = ρ or equipment capital and energy grow at the
same rate.

To further assess the importance of these channels in the evolution of the income share

of energy, we conduct counterfactual exercises by shutting them off one by one. The right

panel of Figure 5.3 presents the results. In the first counterfactual (Cf1), we assume that

energy and skilled labor grow at the same rate (dotted orange line, shutting off the energy-skill

complementarity effect). This channel appears to have been the least important one, as the

resulting energy share trend is quite similar to the one the baseline model predicts. In the second

counterfactual (Cf2), we assume that the income share of skilled labor remains unchanged at

its 1963 level (dashed blue line, shutting off the skilled labor share effect). In this way, we

can predict how the energy share would evolve if we did not experience the secular decline in

the aggregate labor share, which is partly attributed to the change in the composition of the

labor force in favor of skilled labor (see, for example, Orak (2017) and Eden and Gaggl (2019)).

This counterfactual suggests that without the rise in the income share of skilled labor, the

income share of energy would fall to about one-fourth of its 1963 level. Finally, for the third
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counterfactual (Cf3), one could either assume ν = ρ or assume equipment capital and energy

grow at the same rate (dashed-dotted purple line, shutting off the capital-energy substitutability

effect). Without this effect, the income share of energy would have risen to more than four

times its value in the early 1960s, mostly mimicking the rise in the income share of skilled labor.

This implies that the enormous rise in the stock of equipment capital has prevented a larger

share of U.S. income from being directed to energy use. With a less extreme assumption, the

Cf3 experiment suggests that a deceleration in equipment-specific technological progress could

lead energy share to rise, everything else being equal.

To summarize, we show that with plausible differences in substitution elasticities, changes in

observed factor inputs can explain the historical trend in the income share of energy from 1963 to

2019. Capital-energy substitutability and energy-skill complementarity are important in driving

the historical trend in the energy share, but capital-energy substitutability seems particularly

important. Finally, our model is also consistent with other important characteristics of the U.S.

economy.

5.1 Capital-Energy Substitution and Energy-Saving Technical Change

Supply-side models typically capture medium-term fluctuations in the data. So short-run fluc-

tuations understandably pose a challenge. Notably, the large short-run swings in the income

share of energy seem to be mostly driven by the changes in energy prices, as seen in Figure 2.1.

Therefore, in this subsection, we relax the constant elasticity assumption and explore whether

dynamic capital-energy substitution can help explain these short-run fluctuations in the energy

share. It is possible that higher energy prices may incentivize energy-saving technical change,

which may simply be serving as a proxy for omitted shorter term equipment capital and energy

substitutability.

We begin this investigation by exploring patents data. The left panel of Figure 5.4 presents

low-carbon innovations as measured by their share of new internationally cited patents along

with the real (fossil) energy price. As can be seen, the two series are strongly, positively

correlated, providing evidence for innovations induced by energy price shocks.28 The first two

oil shocks and then the 2000s rise in energy demand growth, largely driven by China, spurred

waves of innovations, from solar photovoltaic (PV) and wind turbines to hydraulic fracturing

transforming global energy markets so that natural gas could replace coal.29 The right panel

of Figure 5.4 highlights how energy prices and the share of global low-carbon patents relate to

our parameter governing the elasticity of substitution between equipment capital and energy,

28In a related work, Nunes and Catalao-Lopes (2020) examine the impact of oil prices on patent applications
for alternative energy sources.

29Acemoglu et al. (2023) examine the long-run innovation and climate consequences of shale gas boom.
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Figure 5.4: Global Share of Low-Carbon Patents and Real Energy Price (left panel) and
Expanding-Window Estimates of ν, Expanding-Window Averages of Real Energy Price, and

Global Share of Low-Carbon Patents (right panel)

Note: Patent data are for high-value patents defined as those filed in two or more countries. Low-carbon (or
clean) technologies include decarbonization technologies related to buildings, including housing and appliances;
capture, storage, sequestration, or disposal of greenhouse gas emissions; reduction of greenhouse gas emissions
related to energy generation; decarbonization technologies related to transportation; and system integration
technologies related to power network operation. Data are from the European Patent Office (EPO), PATSTAT
Worldwide Patent Database. Clean technology patent classification is based on EPO and the United Nations
Environment Programme (2014). The values of ν, the parameter governing the elasticity of substitution between
equipment capital and energy, are estimated by expanding-window (1) OLS regressions of equation 4.5 (the
solid red line) and (2) estimates of the production function 5.1 using the GMM methodology with four targets,
including the energy share (the solid blue line). The initial period covers 1963–1972. Each subsequent period
adds one more year to the previous period.

ν.

More specifically, we allow for a time-varying substitution elasticity between equipment cap-

ital and energy. To do so, we run expanding-window OLS regressions to estimate ν starting from

the 1963–1972 period, when energy prices started posting large fluctuations after the first oil

shock, until the year 2019. Alternatively, we estimate ν’s using GMM for the same expanding-

window periods.30 Solid red and solid blue lines in the right panel of Figure 5.4 present the

resulting estimates of ν. Both solid lines show that substitutability between equipment capital

and energy has increased significantly since the mid-1970s, which coincides with higher average

energy prices as well as higher average clean patent shares relative to the mid-1970s, as shown

30We consider four targets for the GMM estimation: no-arbitrage condition, wage-bill ratio, labor share, and
energy share.

25



by the dashed-dotted black line and the dashed green line, respectively. Overall, these results

are in line with our interpretation that energy-saving technological progress–due to rising energy

prices–may simply be serving as a proxy for capital-energy substitutability.

Table 5.2: Estimates of Key Model Parameters with Time-Varying ν’s

Model Methodology σ ρ α ν

With time-varying ν’s OLS+SPMLE 0.426 −0.372 0.091 −
With time-varying ν’s GMM 0.496 −0.351 0.092 −

Baseline OLS+SPMLE 0.431 −0.363 0.094 0.056

Next, we use those time-varying ν estimates to examine our model’s fit. We use the estimates

presented by the solid red line in the right panel of Figure 5.4, along with their corresponding ξ

estimates, in our SPMLE methodology to estimate the rest of the parameters. We also estimate

our model with GMM for robustness. Table 5.2 presents the resulting parameter estimates. It

shows that the other two substitution elasticities (σ, ρ) and the share of structures capital (α)

are similar to those in our baseline considering a fixed ν and ξ for the entire 1963–2019 period.

As a result, the model’s fit for the labor market variables with time-varying ν’s is similar to those

reported for the baseline model (Figure A.3 in the Appendix), meaning the model maintains

its consistency with major U.S. labor market trends.

More remarkably, our model now better captures the short-run movements in the income

share of energy. Figure 5.5 shows that we can account for the short-run swings in the energy

share, particularly in the earlier periods of the study. That is, when we take into account energy-

saving technological progress as proxied by the varying capital-energy substitution, changes in

observed quantities can explain the variation in U.S. (fossil) energy dependence (as measured

by its income share of energy) to a greater extent. All in all, it appears that firms are able

to adopt their technologies in response to changes in energy prices despite energy prices being

generally more volatile than other input prices.31

In summary, when we consider the dynamic interchangeability between equipment capital

and energy over time, coupled with plausible differences in substitution elasticities, the observed

quantities of factors can adequately explain the fluctuations in the U.S. income share attributed

to energy from 1963 to 2019. This implication highlights the significance of the substitution

possibilities between energy and non-energy inputs as permitted by the production technology

(as well as the relative input prices). In the next subsection, we will incorporate alternative

(non-fossil) energy sources into our framework and explore the extent to which the economy

could achieve climate-related targets.
31This volatility is partly because factors such as global geopolitics, not only demand or supply conditions,

also affect energy prices.
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Figure 5.5: The Model’s Predictions for the Energy Share with Time-Varying ν’s versus the
Baseline, 1963–2019

5.2 Pursuing and Achieving Long-Term Climate Change Mitigation

Goals

In our baseline model, we focus on fossil energy because of its historical significance as the

primary source of energy consumption in the U.S. (as illustrated in Figure 5.6, left panel). This

historical perspective underscores the role fossil energy plays in understanding U.S. energy

dependence. Considering that emissions from fossil fuels stand as the predominant driver of

global warming, it is important to take into account substitution possibilities between alterna-

tive (non-fossil) energy sources and fossil energy in the assessment of climate-related objectives.

Consequently, we present a version of the model featuring two energy types.

More specifically, we assume an energy composite consisting of two types of energy, fossil

and non-fossil, such that

Yt = AtK
α
s,t

[
µLσu,t + (1− µ)

(
λ[ξKν

eq,t + (1− ξ)[θEϕ
nf,t + (1− θ)Eϕ

f,t]
ν
ϕ ]

ρ
ν + (1− λ)Lρs,t

)σ
ρ

] 1−α
σ
,

where Enf,t and Ef,t are non-fossil and fossil energy inputs, respectively, and 1
1−ϕ is the elasticity

of substitution between the two energy input types.

To estimate this modified version of the model, we require data on the income share of

non-fossil energy. We source this from the Energy Information Administration’s (EIA) primary
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Figure 5.6: Fossil Energy Share in Total Primary Energy Consumption in the U.S., and Fossil
and Non-Fossil Energy Use, 1963–2019

energy expenditures data. This data is available starting from 1970, but it only covers nuclear

and biomass for non-fossil energy sources. Consequently, we treat biomass and nuclear as

our proxy for non-fossil energy sources and estimate the extended model using data spanning

1970–2019.32

First, we find that fossil and non-fossil energy are substitutable, with an elasticity of sub-

stitution of 1.4.33 Note that this estimate can be considered as a long-term elasticity. Second,

incorporating non-fossil energy into the model has minimal effect on our baseline outcomes,

as the estimates of other substitution elasticities and model fit results remain predominantly

consistent. This outcome is to be expected, given the relatively small contribution of non-fossil

energy to the total U.S. income, particularly when compared to fossil energy and other produc-

tion factors. With this extended model, we are now equipped to delve into long-term policy

inquiries.

Upon rejoining the Paris Agreement in 2021, the U.S. set forth a new target: Lower emissions

by 50 to 52 percent below 2005 levels by 2030. This target covers all sectors. When emissions

from land use, land use change, and forestry are excluded, the recalibrated goal stands at a

32Comprehensive and consistent data on both the price and quantity of non-fossil energy over extended periods
is unfortunately lacking. Therefore, we turn to the historical primary expenditures data provided by the EIA.
We use Table ET1 to obtain the income share of non-fossil energy (nominal expenditures on biomass and nuclear
as a share of output, which is nominal GDP minus the value of energy use outside of domestic production).

33In this version of the model, the substitution elasticity between energy composite and equipment capital is
1.16, slightly higher than 1.06 in the baseline model, which does not distinguish between different energy types.
Details on the estimation and model results are available upon request.
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44 − 47 percent reduction from 2005 levels by 2030 according to the Climate Action Tracker

(CAT).34 As part of its long-term strategy, the U.S. has embraced an objective of achieving net-

zero emissions no later than 2050.35 These objectives prompt an intriguing thought experiment:

To what extent can our economy gravitate toward the realization of these environmental targets?

The reduction of CO2 emissions hinges on diminishing carbon intensity. When formulating

environmental objectives, we establish a clear linkage between the carbon intensity of U.S.

output and the (fossil) energy intensity of output, employing a straightforward decomposition:
CO2
Y

= CO2
E

E
Y
, where CO2 is energy-related carbon emissions, Y is GDP, and E is fossil energy

use. Figure 5.7 plots each component of the decomposition between 1969 and 2019, with

data normalized to 1969 values. Notably, over this period, the carbon intensity of output fell

by approximately 70 percent (solid black line), a decrease closely mirrored by the decline in

the (fossil) energy intensity of output (dashed red line). Concurrently, the carbon intensity

of energy displayed a relative stability (dotted red line). As an important factor influencing

carbon emissions, we focus on the implications of our model for the energy intensity of output,

particularly in the context of targets established in the globally embraced Paris Agreement.

Using our framework, we investigate the extent to which the economy can reduce its fossil

energy intensity—roughly by 50 percent below 2005 levels by 2030—and the potential for further

reductions through the year 2050.

Such an experiment requires assumptions about price trajectories, though the long-term

energy price outlook is notably uncertain. Furthermore, a comprehensive measure of carbon-

free energy costs remains absent, as previously mentioned. Nevertheless, existing evidence

strongly indicates a decline in the real price of carbon-free energy (for example, Gillingham

and Stock (2018) in relation to solar PV panels). For post-2019 pricing of non-fossil energy, we

adopt the National Renewable Energy Laboratory’s (NREL) 2021 Annual Technology Baseline

(ATB) projections, specifically focused on the levelized cost of nuclear energy up to 2050.

Turning to post-2019 pricing of fossil energy, we rely on the EIA’s Annual Energy Outlook

2023 (AEO 2023) projections for prices and consumption and adopt the methodology we used

earlier to construct fossil prices.36 Dashed lines in the left panel of Figure 5.8 plot these price

34CAT is an independent scientific project that tracks government climate action and measures it against the
Paris Agreement.

35Achieving net-zero emissions means an economy either emits no greenhouse gas emissions or offsets its
emissions through actions such as tree planting or employing technologies that can capture carbon before it is
released into the air.

36NREL’s 2021 ATB offers an engineering-based bottom-up projection of technology-specific levelized energy
costs spanning 2019 to 2050. It’s worth noting that using utility-scale PV prices yielded comparable results. The
AEO 2023 explores long-term energy trends in the U.S. We consider AEO 2023 reference case in our experiment.
To determine real energy input prices, we adjust the projected nominal fossil and non-fossil energy prices using
the GDP deflator. Based on realized data up to 2022, we assume a 4 percent rise in the GDP deflator for 2023,
followed by annual increments of 2 percent in subsequent years.
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Figure 5.7: U.S. Carbon Intensity Accounting

Note: CO2 data come from Our World in Data.

paths, suggesting a declining trend for non-fossil prices and an increasing trend for fossil prices.

Higher fossil energy prices in the long run are in line with mitigation policies, such as carbon

taxes, raising tax-inclusive prices of energy.

For the remaining variables, we assume the following: The stock of structures capital and

total factor productivity, At, will maintain their post-Global Financial Crisis (post-GFC) annual

average growth rates of 0.6 percent and 0.4 percent, respectively, through 2050. Labor supplies

and skill abundance (the share of skilled employees in total employment) will grow at their

post-GFC rates, implying the ratio of skilled labor to unskilled labor will increase by an annual

rate of 2.9 percent. An increase in skilled labor supply aligns well with an evolving energy

landscape, as low-carbon energy sectors may require workers with skills necessary for these

jobs (for example, Vona et al. (2018)), and the successful integration of new technologies is

likely contingent upon the presence of suitable skill sets within the labor force. Additionally,

we assume that the relative price of equipment capital will continue its decline at the post-

GFC average growth rate of 5.5 percent through 2050 (as shown by the dashed line in the

right panel of Figure 5.8). With these assumptions in place, we utilize our extended model

to jointly project fossil energy use, non-fossil energy use, and equipment capital through 2050.

This experiment incorporates the substitution elasticities estimated over the 1970–2019 period,

thereby representing long-run elasticities. The results are presented in Figure 5.9, where the
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Figure 5.8: Assumed Price Paths

Note: In the left panel, the solid blue line depicts actual real fossil energy prices. The dashed blue line represents
the fossil price trajectory derived from the EIA’s AEO 2023 projections up to 2050, while the dashed red line
illustrates the real cost of solar electricity generation using NREL’s 2021 ATB projections within the same time
frame. In the right panel, the solid blue line displays equipment capital’s relative price from the data, while the
dashed blue line portrays the assumed price path for the post-2019 period as detailed in the text.

left panel illustrates the income share of (fossil) energy and the right panel shows the fossil

energy intensity of output—defined as the ratio of fossil energy use to real GDP, expressed in

units of 1,000 British thermal units (Btu) per chained (2012) dollar.

Figure 5.9: Model Predictions for the Income Share of Fossil Energy (left) and Fossil Energy
Intensity (right)

Note: Shaded areas show the extended model projections under the aforementioned assumptions.
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In accordance with our model and the aforementioned assumptions, the U.S. income share

of (fossil) energy declines to below 2 percent by 2050, representing a notable departure from

its historical 50-year average of 3.2 percent. This decline can be attributed to both shifting

energy use to non-fossil alternatives and, more significantly, substituting energy with equipment

capital. With respect to intensity, over decades, the fossil energy intensity of U.S. output has

steadily declined. This downward trajectory in fossil energy intensity continues through 2050,

as shown by the dotted blue line in the right panel of Figure 5.9. Our model predicts a

decline of more than 50 percent in U.S. fossil energy intensity below its 2005 level by 2030,

suggesting alignment with the Paris Agreement objectives.37 By 2050, this intensity hovers at

approximately 2.2 thousand Btu per chained dollar, representing more than a halving from its

2019 level.38 Achieving near-zero intensity appears to require at least another decade, extending

our projection past 2050.39 In essence, our analysis underscores the feasibility of achieving the

2030 target, but reaching the 2050 goal may involve additional considerations, such as further

acceleration in equipment-specific technological advancements.40

Within this context, we conduct a counterfactual experiment to examine the possibility for

achieving near-zero fossil energy intensity. We explore two scenarios: one assumes a faster

rate of equipment-specific technological progress, and the other posits a more rapid increase in

fossil energy prices than previously assumed in Figure 5.8. Figure 5.10 illustrates the outcomes

of these scenarios with the dotted orange and dotted green lines, respectively, and compares

them to the extended model’s projection from Figure 5.9 (dotted blue line). If the decline in

the relative price of equipment capital doubles relative to the prior assumption, all else being

equal, fossil energy intensity would drop an additional 42 percent by 2050—down to around 1.2

Btu per chained dollar, as indicated by the dotted orange line. A comparable reduction, shown

by the dotted green line, occurs if the fossil energy price increase is quintupled.41 When we

combine these two scenarios—accelerated technological progress and significantly higher fossil

37The COVID-19 pandemic, the Russian invasion of Ukraine, and the ongoing energy transition have catalyzed
shifts in the global energy landscape, propelling large swings in energy prices over the 2020–2022 period (as
evidenced by the spike in the dotted blue line in the left panel of Figure 5.8). Our model parameters are
estimated using data through 2019. However, the energy price projections incorporate actual data up to 2023.
This means the predicted spike in fossil energy intensity over 2020–2022 is driven partly by the substantial
swings in observed energy prices.

38Note that this projected decline in fossil energy intensity by 2050 is predominantly driven by the decline in
the relative price of equipment capital (see Figure A.4).

39In this exercise, we assume energy prices will grow at their 2041-2050 average rate through 2070 while
holding assumptions about other variables the same.

40Regarding the labor-related aspects of the economy (not shown), our model predicts around a 2 percentage
point increase in the labor share and a notable reduction in the skill premium. This shift can be attributed, in
part, to the skilled labor supply surpassing demand resulting from capital deepening (under our assumptions).

41We assume a five-fold increase in the fossil energy price to achieve a decline in fossil energy intensity
comparable to that resulting from doubling the decrease in the relative price of equipment capital.
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energy prices (purple dotted line)—fossil energy intensity falls to near-zero levels, 0.39 Btu per

chained dollar by 2050. Thus, meeting the 2050 target may involve an even greater boost in

equipment-specific technological progress and a more substantial reduction in fossil energy use,

triggered by steeper price increases.

Figure 5.10: Path to Near-Zero Fossil Energy Intensity

Note: The dotted blue line shows our extended model’s prediction for fossil energy intensity based on the afore-
mentioned assumptions (presented in Figure 5.8). The orange dotted orange line presents the counterfactual
projection when the pace of equipment-specific technological change is assumed to double relative to the ex-
tended model’s assumption. The dotted green line shows fossil energy intensity under the assumption of fossil
energy prices increasing five-fold faster than in the extended model. The dotted purple line combines these two
counterfactuals.

The substitution possibilities between energy and equipment capital, as well as between

fossil and non-fossil energy are important factors driving our results. The potential for more

affordable and superior equipment capital could play a crucial role in diminishing the economy’s

fossil energy intensity over the coming decades. Consider this scenario: If the relative price

of equipment capital had remained steady up until the year 2050, all else being equal, our

results would indicate a relatively stable fossil energy intensity trajectory. Thus, changes in the

equipment capital stock may have a notable impact on the economy’s fossil energy intensity

and, subsequently, its carbon intensity. Overall, these findings align with the objectives of

the U.S.’ IRA, which focuses on historic investments to address climate change. Advancing

the accessibility and quality of equipment capital can catalyze energy-efficient technological

advancements, potentially leading to increased substitution opportunities between equipment
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capital and fossil energy. Furthermore, our analysis points to the importance of reallocating

resources toward augmenting the abundance of non-fossil energy sources and reducing their

costs.

Our findings provide important insights for climate policy design. Understanding and in-

tegrating the short- and long-run elasticities of substitution between energy and capital equip-

ment, along with their dynamic interchangeability, can improve the accuracy of gauging energy

intensity and inform the development of environmental strategies. Our analysis suggests that

enhancements in equipment capital affordability and accessibility may significantly affect en-

vironmental targets. In formulating strategies, considering the interactions between fossil and

non-fossil energy, as well as between capital-energy services and skilled labor is also relevant.

6 Conclusion

In this paper, we explore a simple, explicit economic mechanism for thinking about energy-

saving technical change and an economy’s dependence on fossil energy. We estimate an aggre-

gate production function in two types of capital, two types of labor, and (fossil and non-fossil)

energy using different methods and disaggregated U.S. data over the past six decades. We find

that capital-energy substitutability and energy-skill complementarity are important factors in

understanding the historical trend in the U.S. fossil energy dependence. When we consider

energy-saving technological progress as proxied by time-varying capital-energy substitutability,

changes in observed factor inputs alone can largely account for the short-run movements in the

income share of energy over the past six decades as well.

Through the lens of our theory, we also make projections regarding climate-related ob-

jectives, illustrating the potential of achieving certain targets. Our findings suggest that the

development of more affordable and advanced capital equipment can play an important role in

reducing the economy’s carbon intensity over the coming decades.

Finally, our analysis underscores the importance of considering disaggregated inputs in

environmental macroeconomics and provides substitution elasticities that enhance our under-

standing of directed technical change and its relation to climate change. This analysis can be

applied to other countries and can be extended and integrated into broader assessment models,

such as integrated assessment models.
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A Appendix

A.1 Data Construction

A.1.1 Construction of Energy-Related Series

We construct the energy variables following Hassler et al. (2021), using data from the EIA, as

follows.

Our data covering 1949 to 2019 suggest that the average price for crude oil in 2005 dollars

per Btu is 3.75 times as high as the coal price, while the average price for natural gas in

2005 dollars per Btu is 1.57 as high as the coal price. So we compute fossil energy use as Et =

Ec
t +3.75Eo

t +1.57Eg
t , where E

c
t , E

o
t , and E

g
t stand for coal consumption, crude oil consumption

(excluding biofuels), and natural gas consumption (excluding supplemental gaseous fuels) in

million Btu, respectively. These series are available for the 1949–2019 period from Table 1.3:

“Primary Energy Consumption by Source,” Monthly Energy Review.

We obtain the fossil energy price variable as Pt = (P cEc
t + P oEc

o + P gEg
t )/Et. For that

purpose, we first create individual price series P c, P o, and P g of coal, crude oil, and natural

gas, measured in dollars per million Btu. For the crude oil price, we use ”Domestic Crude Oil

First Purchase Prices (dollars per barrel),” which can be found at https://www.eia.gov/dnav/

pet/pet_pri_dfp1_k_a.htm. We divide this series by “Crude Oil Production Heat Content

(million Btu per barrel)” to create a series of the crude oil price in dollars per million Btu.

The Crude Oil Production Heat Content series is available in Table A2: “Approximate Heat

Content of Petroleum Production, Imports, and Exports,” Monthly Energy Review. For the

natural gas price, we use two different series because of discontinuity of a series. We use “U.S.

Natural Gas Wellhead Price (dollars per thousand cubic feet)” from 1949 to 2012 and “U.S.

Natural Gas Electric Power Price (dollars per thousand cubic feet)” from 2013 to 2019. The

former can be found at https://www.eia.gov/dnav/ng/hist/n9190us3a.htm, and the latter

can be found at https://www.eia.gov/dnav/ng/hist/n3045us3a.htm. We alter the unit of

the combined series to dollars per cubic foot and then divide it by “Natural Gas Production,

Marketed Heat Content (million Btu per cubic foot)” to construct the natural gas price in

dollars per million Btu. The Natural Gas Production Heat Content series is available in Table

A4: “Approximate Heat Content of Natural Gas,” Monthly Energy Review. For the coal price,

we use “Nominal Coal Price, Total” for the 1949-2019 period available in Table ES-4: “Nominal

Coal Prices,” Annual Coal Report. We divide the coal price series by “Coal Production Heat

Content (million Btu per short ton)” to construct a coal price series in dollars per million Btu.

After constructing individual price series in dollars per million Btu, we deflate them with the

GDP deflator to express the price series in thousands of 2005 dollars per million Btu.
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We calculate the output measure as Y = GDP − (net exports of fossil fuel). For GDP, we

use real GDP in 2005 dollars. We use data from Table 1.4c: “Primary Energy Net Imports by

Source (million Btu)” in Monthly Energy Review and multiply net exports by price to express

the net export in dollars. Then, we sum the net export values of three fuel types to construct

the Fossil Fuel Net Exports series. Here, we use the GDP deflator to express the series in 2005

dollars. We then construct our fossil energy share as EtPt/Yt, where Yt is measured net of the

net export of fossil fuel, as mentioned.

A.1.2 Construction of Labor Inputs and Wages

We follow Krusell et al. (2000) and Ohanian et al. (2023) in constructing the labor inputs and

wage rates. Here, we summarize our steps briefly and refer interested readers to those papers

for more details.

Labor inputs and wage rates are constructed using the individual–level data from the Cur-

rent Population Surveys (CPS) from 1963 to 2019. Also similar to Domeij and Ljungqvist

(2019), we have both a labor input sample and wage sample. In the former, we drop those

younger than 16 or older than 70, those reported as unpaid family workers or in the military,

those who were not in the labor force in the previous year, and those who have missing qual-

ifications, such as their educational attainment. In the latter, we also drop the self-employed

and agents who reported working less than full time (that is, 40 weeks a year and 35 hours a

week). Finally, observations with allocated income, those with hourly wages below half of the

minimum federal wage rate, and those with weekly pay less than $62 in 1980 dollars are all

dropped.

Individuals are first divided into 264 groups based on their age (16–20, 21–25, 26–30, 31–35,

36–40, 41–45, 46–50, 51–55, 56–60, 61–65, and 66–70); sex (male or female); race (white, black,

others); and educational attainment (less than high school, high school, some college, and a

college degree and/or more). We also record each individual’s employment status, class, weekly

hours worked (usual hours worked per week for the post-1975 period and weeks worked last year

before that), weeks worked a year before, and total wage and income a year before. Using this

information and CPS personal supplement weights, we calculate income and total hours worked

for each individual for each year in the sample. In doing so, we do not make any adjustments

for top codes, because, as Ohanian et al. (2023) report, results are not affected much by the

treatment of top-coded incomes.

Once we have the total income and hours worked for each individual, we calculate their

wage rates simply by dividing their total income to total hours worked. We then aggregate

these individual hours to calculate total hours for each of the 264 groups and calculate average

wage rates for each group by taking the weighted average of wages of each individual in the
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relevant group. Finally, these 264 groups are aggregated into two skill categories: skilled and

unskilled, based on the educational attainment of each group. We define skilled labor only as

those with a college or graduate degree. We use the group wages of 1980 as the weights when

aggregating the groups into skilled and unskilled categories.

A.1.3 Construction of the Income Shares of Labor and Equipment Capital

To maintain comparability, we construct gross labor share as described in Krusell et al. (2000).

As such, labor share is constructed as “1 − aggregate capital share,” where aggregate capital

share is the ratio of the sum of net interest and miscellaneous payments, rental income of persons

with capital consumption adjustment, corporate profits with inventory valuation and capital

consumption adjustments, and depreciation to the difference between gross domestic income

and proprietors’ income from the BEA’s NIPA Tables 1.10 and 1.17.5. We then subtract energy

share from aggregate capital share to obtain the sum of income shares of equipment capital and

structures, which we call non-energy capital share.

To construct a series for the income share of equipment capital, we first assign a constant

share of income to structures capital, consistent with the Cobb–Douglas technology we assumed

for it—that is, we take the α estimate of Ohanian et al. (2023) as given. Then, we obtain

equipment capital share as the remaining part of the non-energy capital share, which is used in

estimating energy-related parameters ν and ξ employing equation 4.6.

40



A.2 Additional Results

Model Fit for Specifications I and II

Figure A.1: Model Fit for Specifications I and II

Note: This figure shows the model fits for two production technology specifications presented in the top two
rows of Table 3.1.
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Baseline Model versus Alternative Model with Energy Share as the Target

In the baseline model, we consider three targets: wage-bill-ratio, no-arbitrage condition, and

aggregate labor share. In an alternative scenario, we replace aggregate labor share with the

income share of energy, and keep the other two targets the same—that is,

1. Baseline: no-arbitrage, wage-bill ratio, labor share

2. Alternative: no-arbitrage, wage-bill ratio, energy share

We estimate the parameters of the alternative model using SPMLE, similar to the baseline

model, for consistency. Note that ν is estimated using OLS in both cases, resulting in 0.0555.

The estimated parameters for the alternative case are presented along with the baseline values

in Table A.1.

Table A.1: Parameters Estimated for the 1963–2019 Period

σ ρ α
Baseline 0.431 −0.363 0.094

Alternative 0.344 −0.547 0.095

The alternative model’s predictions are presented in Figure A.2. As seen in the figure, the

model fails to capture the level and the decline of the labor share when the energy share replaces

the labor share as the third target.
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Figure A.2: Baseline Model versus Alternative Model
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Model Fit with Time-Varying ν’s

Figure A.3: The Model’s Predictions with Time-Varying ν’s for Labor Market Variables,
1963–2019
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Roles of the Relative Price of Equipment Capital versus Energy Prices in Lowering

Fossil Energy Intensity

In this counterfactual exercise, we assess the relative importance of equipment-specific tech-

nological progress and energy prices in driving the predicted decline in fossil energy intensity

through 2050, as shown by the dotted blue line in Figure A.4. If we keep our assumed path

for the relative price of equipment capital unchanged but hold energy prices constant at their

2019 level, the model projects fossil energy intensity to decline to 2.31 BTU per chained dollar

(the dotted black line, counterfactual 1). This implies that the equipment-specific technological

progress channel alone can account for almost 90 percent of the decline in fossil energy intensity

from 2023 to 2050. Conversely, if we maintain the energy price assumptions as they are, but

keep the relative price of equipment capital unchanged at its 2019 level, fossil energy intensity

falls only to 3.14 BTU per chained dollar by 2050 (the dotted red line, counterfactual 2). This

exercise suggests that the projected decline in fossil energy intensity is predominantly driven

by the decline in the relative price of equipment capital.

Figure A.4: Roles of the Relative Price of Equipment Capital versus Energy Prices
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