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1. Introduction

The slope of the Phillips curve is an important parameter in the minds of policymakers.

Empirical evidence suggests a ‘flattening’ of the Phillips curve in recent decades, indicating

inflation has become less responsive to movements in measures of aggregate economic activity,

such as the output gap.1 Although this phenomenon appears using reduced-form estimation

procedures, as in Atkeson and Ohanian (2001), it also appears using structural approaches

to estimation, as in Smets and Wouters (2007). In the New Keynesian framework, the slope

of the Phillips curve appears in targeting rules describing optimal monetary policy. Given

these observations, this paper addresses two issues: (1) the derivation of a Phillips curve with

a changing slope, driven by changes in the cost of price adjustment and (2) the implications

for optimal discretionary monetary policy confronting this type of structural change.

The channel generating the change in the slope of the Phillips curve is a shift in the price

setting friction for monopolistically competitive firms.2 The microfoundations of the firm’s

price-setting problem are similar to Rotemberg (1982), except the term governing the cost

of price adjustment is subject to change over time. The equation describing the optimal

price-setting behavior of the firm is similar to a standard forward-looking New Keynesian

Phillips curve, except the coefficients on expected inflation and the output gap are subject

1For example, Atkeson and Ohanian (2001), Roberts (2006) and Williams (2006) document the flattening
of the Phillips curve for the U.S., whereas Iakova (2007) does so for the U.K. and De Veirman (2007) for
Japan.

2Several competing explanations for the change in the slope of the Phillips exist. For example, improve-
ments in the conduct of monetary policy and globalization present additional rationale for a decline in the
slope of the Phillips curve. However, this paper does not address these potential causes and focuses only on
changes arising from the price setting friction. See Mishkin (2007) for an overview.
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to change.

In the presence of markup shocks, a central bank trying to stabilize inflation and output

faces the Phillips curve as the constraint on achieving these objectives. Under discretion, the

optimal targeting rule balances policy objectives by prescribing adjustments to the output

gap in response to movements in inflation. The central bank adjusts the output gap ag-

gressively if the relative weight on output gap fluctuations in its objective function is small

or the slope coefficient on the output gap in the Phillips curve is large. If the slope of the

Phillips curve changes, then the optimal targeting rule will also change under a loss function

that has a constant relative weight on output gap deviations, such as a common ad-hoc loss

function in squared deviations of inflation and the output gap.

A benefit, however, of deriving the Phillips curve under the potential for structural change

is that it makes possible the derivation of a utility-based welfare criterion. In contrast

to an ad-hoc loss function with a constant relative weight on output gap deviations, a

central feature of the utility-based measure is that this weight depends on the slope of the

Phillips curve, so changes when the slope of the Phillips curve shifts. The changing weight

reflects that higher losses arise due to inflation in states with relatively high costs of price

adjustment. Since inflation imposes higher costs on firms in states with relatively sticky

prices, it is precisely in these states that monetary policy increases the relative weight on

inflation stabilization. In contrast to the ad-hoc rule, the optimal targeting rule under the

utility-based welfare criterion directs the central bank to have a constant systematic response

to inflation. That is, the optimal targeting rule advocates a policy that consistently adjusts
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the output gap to the same extent in response to inflation, regardless of the slope of the

Phillips curve.

Blake and Zampolli (2006), Moessner (2006), Zampolli (2006) and Svensson and Williams

(2007) also demonstrate how shifts in parameters governing private sector relations generate

shifts in the central bank’s targeting rule. This paper differs from this previous work in two

respects. First, the Phillips curve relation with changing coefficients arises from a repre-

sentative firm’s optimal pricing problem. Moessner (2006), Zampolli (2006) and Svensson

and Williams (2007) study macroeconomic relations with changing parameters, but do not

incorporate the potential for parameter change into the original optimization problems of

households and firms. In this paper, the potential for structural change is built into the

primitive optimization problem of the firm. The different approaches, however, stems par-

tially from the different focus. For example, Svensson and Williams (2007) are specifically

interested in model uncertainty and not with the mechanics generating shifts in the private

sector relations. Second, this paper constructs a utility-based welfare criterion, instead of

using an ad-hoc loss, to evaluate different monetary policies confronting shifts in the slope of

the Phillips curve. Deriving the utility-based metric is possible because the microfoundations

of the firm’s pricing problem are made explicit.
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2. The NK Phillips Curve Under Changing Costs of

Price Adjustment

This section embeds state-dependent parameters into the optimal pricing problem of a mo-

nopolistically competitive firm. As in Rotemberg (1982), the firm faces quadratic costs of

price adjustment, except the term governing the magnitude of the cost is subject to change.

Introducing these changing costs into the pricing problem results in a Phillips curve relation

with coefficients on the output gap and expected inflation that change over time.

2.1 Changing Costs of Price Adjustment

The Rotemberg (1982) formulation imposes a cost on monopolistic intermediate-goods pro-

ducing firms for adjusting their price, given by

acjt =
ϕ

2

(
Pt (j)

ΠPt−1 (j)
− 1

)2

Yt, (1)

where ϕ ≥ 0 governs the magnitude of the price adjustment cost, Π denotes the gross steady-

state rate of inflation and Pt (j) denotes the nominal price set by firm j ∈ [0, 1].3 The cost

is measured in terms of the final good Yt. The assumption of quadratic adjustment costs

implies that firms change their price every period in the presence of shocks, but will adjust

only partially towards the optimal price the firm would set in the absence of such costs. As

with any type of quadratic adjustment cost, a firm prefers a sequence of small adjustments

to very large adjustments in a given period. Alternatively, these costs may vary according

3See Ireland (2004) for a detailed treatment of quadratic costs of price adjustment in a DSGE model.
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to a state, st, such as

acjt (st) =
ϕ (st)

2

(
Pt (j)

ΠPt−1 (j)
− 1

)2

Yt, (2)

where firms face a state-dependent cost of price adjustment. For st ∈ {1, 2}, the state evolves

according to a two-state Markov chain with transition probabilities given by pmn = Pr[st =

n|st−1 = m] for m,n = 1, 2.4 Both private agents and the central bank observe st.

Changes in ϕ capture shifts in the myriad of costs facing firms when they adjust their

price. Blinder, Canetti, Lebow, and Rudd (1998) and Zbaracki, Ritson, Levy, Dutta, and

Bergen (2004) provide in-depth reviews of actual pricing decisions at firms and emphasize the

complexity of the price adjustment process. Empirical evidence at the firm level, however,

on how these costs change over time is lacking.

At the macroeconomic level, estimation of DSGE models suggest a change in the param-

eters governing price setting frictions in the early 1980s. For example, Boivin and Giannoni

(2006) and Smets and Wouters (2007) split samples and estimate a lower slope coefficient

on the output gap in the New Keynesian Phillips curve after about 1980. They discuss the

change in slope as potentially arising from less frequent price adjustment under the low and

stable aggregate inflation of the past few decades. Using the Rotemberg (1982) framework,

this interpretation implies firms face higher costs of price adjustment in the post-Volcker

period. Under the specification of adjustment costs in (2), the exogenously evolving cost of

price adjustment captures these shifts in price setting frictions, but does not incorporate the

possible linkages between aggregate conditions and firm-level pricing behavior.

4The assumption of two states is made for convenience and tractability, it can be replaced with an
assumption concerning any finite number of states.
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2.2 The Optimal Pricing Problem

Each of the monopolistically competitive intermediate-goods producing firms seek to maxi-

mize the expected present-value of profits,

Et

∞∑
s=0

βsΔt+s
Dt+s (j)

Pt+s
, (3)

where Δt+s is the representative household’s stochastic discount factor, Dt (j) are nominal

profits of firm j, and Pt is the nominal aggregate price level. Also, firm j produces good j.

For given st, real profits are

Dt (j)

Pt
=
Pt (j)

Pt
yt (j) − Ψtyt (j) − ϕ (st)

2

(
Pt (j)

ΠPt−1 (j)
− 1

)2

Yt, (4)

where Ψt denotes real marginal cost and yt (j) = nt(j) is the production of intermediate

goods by firm j using labor input nt(j).

There exists a final-goods producing firm that purchases the intermediate inputs at nom-

inal prices Pt (j) and combines them into a final good using the following constant-returns-

to-scale technology

Yt =

[∫ 1

0

yt (j)
θt−1

θt dj

] θt
θt−1

, (5)

where θt > 1 ∀ t is the elasticity of substitution between goods. Variations in θt translate

into markup shocks of the monopolistic firm’s price over its marginal cost. The profit-

maximization problem for the final-goods producing firm yields a demand for each interme-

diate good given by

yt (j) =

(
Pt (j)

Pt

)−θt

Yt. (6)
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For a given st, substituting (4) and (6) into (3) then differentiating with respect to Pt (j)

yields the first-order condition

0 = (1 − θt) Δt

(
Pt (j)

Pt

)−θt
(
Yt

Pt

)
+ θtΔtΨt

(
Pt (j)

Pt

)−θt−1 (
Yt

Pt

)
− (7)

ϕ (st)Δt

(
Pt (j)

ΠPt−1 (j)
− 1

) (
Yt

ΠPt−1 (j)

)
+

βEt

[
ϕ (st+1)Δt+1

(
Pt+1 (j)

ΠPt (j)
− 1

) (
Pt+1 (j) Yt+1

ΠPt (j)2

)]
,

where an analogous condition exists for each st.

In a symmetric equilibrium, every firm faces the same Ψt and Yt, so the pricing decision

is the same for all firms, implying Pt (j) = Pt. Also, steady-state inflation and output are

constant across states. Steady-state marginal costs are given by

Ψ =
θ − 1

θ
, (8)

and Ψ−1 = μ, where μ is the steady-state markup of price over marginal cost. In the flexible-

price case, where ϕ (1) = ϕ (2) = 0, marginal cost is Ψt = θ−1
t (θt − 1) and the markup is

μt = θ−1
t (θt − 1) > 1.

To obtain a linear system the captures the firm’s pricing decision, (7) is log-linearized con-

ditional on each st and expectations are written using the approach in Gordon and St-Amour

(1999), Bansal and Zhou (2002), and Davig and Leeper (2007). This approach requires defin-

ing a smaller information set that excludes the current state, Ω−s
t , where Ωt = Ω−s

t ∪ {st}

and Ωt represents the full information set available at time t. For example, conditional ex-

pectations of inflation using Ωt are Etπt+1 = E[πt+1 |Ωt ], where πt = log (Πt/Π). Using Ω−s
t ,
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distributing probability mass over states at t+ 1 yields

Etπt+1 = E[πt+1

∣∣st = i,Ω−s
t ] = pi1E[π1t+1

∣∣Ω−s
t ] + pi2E[π2t+1

∣∣Ω−s
t ], (9)

which uses the state-contingent notation that defines πt = πit ⇔ st = i for i = 1, 2. This

notation simply indicates that inflation at t depends on the state at t, and not directly on

past states (i.e. st−i for i > 0). Similar notation applies to all other endogenous variables.

When taking expectations of variables written in state-contingent notation, let Etπit+1 ≡

E[πit+1

∣∣Ω−s
t ].

Imposing symmetry and (8), a linear approximation to the firm’s optimal price-setting

equation can be written in terms of aggregate inflation using state-contingent notation as

π1t = p11βEt [π1t+1] + (1 − p11)
ϕ2

ϕ1
βEt [π2t+1] +

θ − 1

ϕ1
(ψ1t + ut) , (10)

and for st = 2 as

π2t = p22βEt [π2t+1] + (1 − p22)
ϕ1

ϕ2
βEt [π1t+1] +

θ − 1

ϕ2
(ψ2t + ut) , (11)

where ϕi = ϕ(i) , ψit = log (Ψit/Ψ), ut = log (μt/μ) = − (θ − 1)−1 θ̂t is the markup shock

and θ̂t = log(θt/θ).
5 More generally, these expressions can be rewritten as

πit = ϕ−1
i βEt [ϕ (st+1)πt+1] +

θ − 1

ϕi
(ψit + ut) , (12)

for i = 1, 2, which reduces to the constant-parameter specification when either ϕi = ϕ for all

i or p11 = p22 = 1. Equation (12) illustrates how changing costs of price adjustment affect the

coefficients on marginal cost and expected inflation. High costs of price adjustment results in

5See Appendix A for detailed derivations of (10) and (11).
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a ‘flat’ Phillips curve, whereas lower costs results in a ‘steep’ Phillips curve. Thus, movements

in real marginal cost in states with a flat Phillips curve have a relatively small effect on

inflation, so equilibrium adjustments to shocks occur relatively more through quantities

than prices.

3. Households

To analyze the implications of instability in the Phillips curve in a dynamic stochastic general

equilibrium setting, this section gives the representative household’s problem and optimality

conditions. In a subsequent section, the households period-utility function forms the basis

of the central bank’s loss function.

The representative household chooses {Ct, Nt, Bt}∞t=0 to maximize lifetime utility

Et

∞∑
t=0

βt

(
C1−σ

t

1 − σ
− H1+η

t

1 + η

)
(13)

where Ct is the composite good, Ht =
∫ 1

0
ht(j)dj is time spent working, β ∈ (0, 1) is the

discount factor and σ > 0 is the coefficient of relative risk aversion. Utility maximization is

subject to the intertemporal budget constraint

PtCt +Bt = Bt−1 + (1 + ν)WtHt + PtXt − PtTt, (14)

where Bt are nominal bond holdings, Xt are real profits from ownership of firms, Tt are

lump-sum taxes, Pt is the aggregate price level, Wt is the nominal wage and Qt is the inverse

of the gross nominal interest rate. Lump-sum taxes finance a constant employment subsidy,

ν, which offsets the inefficiently low level of production in the steady-state arising from the
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monopolistic distortion. The subsidy is set equal to (1 + ν) = μ, which sets the flexible-

price steady-state level of output equal to the level that would prevail in the absence of the

monopolistic distortion (i.e. the efficient level).

The household’s first-order conditions are

(1 + ν)
Wt

Pt
=

Hη
t

C−σ
t

, (15)

1 = βEt

[
(Qtπt+1)

−1

(
Ct+1

Ct

)−σ
]
. (16)

In the previous section, the household discount factor is Δt+s = (Ct+s/Ct)
−σ

. In equilibrium,

Ht = Nt must also hold, where Nt =
∫ 1

0
nt(j)dj. Also, there is no price dispersion in a

symmetric equilibrium with quadratic costs of price adjustment, so aggregate output equals

aggregate labor effort, so Yt = Nt.
6

The aggregate resource constraint is

Yt = Ct +
ϕ (st)

2
(Πt − 1)2 , (17)

where steady-state inflation is set to zero.

4. Optimal Discretionary Policy Under an Ad-hoc Loss

Optimal policy under discretion in a standard New Keynesian framework, such as in Clarida,

Gali, and Gertler (1999), instructs policy to contract aggregate demand when inflation rises.

The extent of the response depends on two factors: the slope of the Phillips curve and the

6That is,
∫ 1

0 nt(j)dj =
∫ 1

0 yt(j)dj is equivalent to Nt = Yt

∫ 1

0

(
Pt(j)

Pt

)−θt

dj, where
∫ 1

0

(
Pt(j)

Pt

)−θt

dj = 1.
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weight policymakers assign to output gap deviations in their loss function. A Phillips curve

with a steep slope allows the central bank to exert considerable influence over inflation by

adjusting aggregate demand. Concerns over output gap stability, however, tempers the use

of the output gap to stabilize inflation.

Similar to Blake and Zampolli (2006), Moessner (2006), Zampolli (2006) and Svensson

and Williams (2007), this section uses an ad-hoc loss function to determine how the central

bank should respond to shifts in the slope of the Phillips curve. Specifically, the central

bank’s period ad-hoc loss function is

Lt = π2
t + λx2

t , (18)

where λ is the relative weight on output deviations. The optimal discretionary policy takes

private sector expectations as given and minimizes (18) subject to

πit = ϕ−1
i βEt [ϕ (st+1)πt+1] + κixit + et, (19)

where κi = ϕ−1
i (σ + η) (θ − 1) , xt = log(Yt/Y ) and et = ϕ−1

i θ̂t.
7 The disturbance et repre-

sents a transformed markup shock. Since the optimization problem is static, the central bank

only needs to be concerned with setting policy based on the current state and disregards

how the slope of the Phillips curve may change in the future.

Combing the first-order conditions for each state yields the optimal state-contingent

targeting rules

xit = −κi

λ
πit, (20)

7The relationship between the output gap and marginal cost term is given by ψt = (σ + η)xt.
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for i = 1, 2. This set of targeting rules indicates that the central bank should optimally vary

how aggressively it acts to offset aggregate supply disturbances depending on the slope of

the Phillips curve. In states with relatively low costs of price adjustment, say in st = 1,

the Phillips curve is steep and implies that inflation is relatively responsive to changes in

the output gap. In this case, the optimal targeting rule instructs policy to use this leverage

and adjust the output gap more aggressively in response to inflation. So with κ1 > κ2, the

central bank adjusts aggregate demand more aggressively when st = 1 than when st = 2.

5. The Utility-Based Welfare Criterion

The ad-hoc loss function in squared deviations of the output gap and inflation from their

steady-state values is a common specification and reflects the objectives of many central

banks. Woodford (2003) shows how a second-order approximation to the expected utility

of the consumer under the assumption of staggered price-setting, as in Calvo (1983), gives

rise to a loss function of the ad-hoc form. However, the weight on the output gap term is

a function of the frequency of price adjustment, among other structural parameters. Eusepi

(2005) derives the utility-based welfare function for price adjustment subject to quadratic

costs, as in Rotemberg (1982), and shows how the weight on the output gap term depends

on the parameter governing the cost of price adjustment. In a setting where this cost can

change, this section shows that the weight on the output gap also changes with the cost of

price adjustment and how this affects the optimal policy under discretion.

The appendix derives the following period loss function from an approximation to the
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period utility function of the representative household

Lub
it = Ωi

[
π2

t + λix
2
t

]
, (21)

where Ωi = .5ϕi scales the loss according to the cost of price adjustment and

λi =
η + σ

ϕi
, (22)

indicating that the weight on output gap deviations depends on the state governing the cost

of price adjustment. If the utility function has log consumption and is linear in labor, so

σ = 1 and η = 0, then (22) is simply λi = ϕ−1
i .

In a state with a relatively low cost of price adjustment, deviations in inflation create

a small loss, so the weight on the output gap is relatively high. Conversely, in a state

with a high cost of price adjustment, deviations in inflation are costly, so the central bank

should place less emphasis on output stabilization. This intuition is similar to that from

the utility-based welfare criteria derived under the Calvo mechanism of price adjustment,

as in Woodford (2003). When the price adjustment is infrequent, losses arise from price

dispersion, so the central bank should place low weight on output stabilization relative to

the case when price adjustment occurs more frequently.

Minimizing the central bank’s utility-based loss function subject to the Phillips curve

under the assumption that policy actions do not affect private agents’ expectations yields

xit = −κi

λi

πit, (23)

or after substituting for λi and κi,

xit = (1 − θ) πit, (24)
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indicating the central bank should not optimally vary how aggressively it acts to offset

aggregate supply disturbances. The optimal targeting rule is a constant relation between

output and inflation, independent of the state, and depends only upon the elasticity of

substitution between goods. This result differs from the optimal discretionary policy under

an ad-hoc loss, where the optimal discretionary policy instructs the central bank to switch

policies in accordance with the slope of the Phillips curve.

In the state with relatively high costs of price adjustment, both the weight attached to

output gap stabilization and the slope coefficient in the Phillips curve are relatively small.

Under an ad-hoc loss, a high cost of price adjustment (i.e. flat Phillips curve) directs policy

to reduce the systematic output gap response to inflation deviations precisely because such

movements are less effective at stabilizing inflation. However, inflation volatility is more

costly to firms in states with high costs of price adjustment, an aspect that the ad-hoc loss

function neglects. The utility-based welfare criterion captures this higher cost of inflation

volatility by reducing the weight on output gap stabilization in the states with a high cost

of price adjustment.

Thus, in the high-cost state, two opposing forces exactly offset to bring about the invariant

policy response : 1) a lower slope of the Phillips curve, which directs policy to reduce output

gap movements to stabilize inflation and 2) a lower weight on the output gap, which directs

policy to increase output gap movements to stabilize inflation.8 The difference in comparison

to the optimal policy under the ad-hoc loss function is that it only accounts for the first factor,

8Analogous reasoning applies to the low-cost state.
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the change in the slope of the Phillips curve, and ignores the welfare implications of inflation

in the different states.

6. Welfare Analysis

In this section, I compute the loss due to a central bank that sets policy to minimize the

ad-hoc loss function instead of the utility-based metric. Clearly, loss arises if the weight on

output gap deviations in the ad-hoc loss differs from the utility-based value. This weight,

however, can align for one particular state, but a change in the slope of the Phillips curve

will result in a welfare loss. To compute this loss, I derive the solutions for inflation and

output using the targeting rules that minimize the ad-hoc loss function, then evaluate the

welfare implications using the utility-based metric.

Using the method of undetermined coefficients on the minimum set of state variables,

which are st and et, solutions under the ad-hoc loss have the form

xit = aiet, (25)

πit = − λ

κi

aiet (26)

for i = 1, 2. The appendix illustrates how to find the unknown state-contingent coefficients,

ai for i = 1, 2, which have the following relationship to the structural parameters

[
(1 − p11γ1ρ) − (1 − p11) γ1

κ1ϕ2

κ2ϕ1
ρ

− (1 − p22) γ2
κ2ϕ1

κ1ϕ2
ρ (1 − p22γ2ρ)

] [
a1

a2

]
=

[
− κ1

λ+κ2
1− κ2

λ+κ2
2

]
. (27)

In the case of i.i.d. shocks, solutions to (27) are ai = −κi (λ+ κ2
i )

−1
for i = 1, 2.
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The utility-based metric implies that the average welfare loss for st = i each period is

L
ub

it = .5ϕi

[
var (πt) +

η + σ

ϕi
var (xt)

]
. (28)

Let θ̂t ∼ i.i.d. N (0, 1), then recalling et = ϕ−1
i θ̂t and substituting the solutions for inflation

and the output gap into (28) yields

L
ub

it = .5ϕ−1
i

[(
λ

κi

)2

+
η + σ

ϕi

]
a2

i , (29)

where minλ L
ub

it = η+σ
ϕi

. However, the common ad-hoc specification holds λ constant, so

minλ L
ub

1t 
= minλL
ub

2t , which indicates that λ can maximize welfare in one state, but will

result in a welfare loss when the slope of the Phillips curve changes.

For a quantitative illustration, I set σ = 1 and η = 0, which implies a utility function

that has log consumption and is linear in labor, and take numerical estimates of the slope

coefficients for the Phillips curve from Lubik and Schorfheide (2004). For the other parame-

ters, β = .99 and μ = 1.1. Using the mid-points of the credibility intervals from the pre- and

post-Volcker samples, the slope coefficients in the Phillips curve are κ1 = .725 (pre-Volcker)

and κ2 = .58 (post-Volcker). Figure 1 plots each utility-based loss function (29) as a func-

tion of λ. The loss is given as a percentage of the loss under the policy that minimizes the

utility-based welfare metric. For κ1, the minimizing point corresponds to λ = ϕ−1
1 , which is

the weight on output gap deviations prescribed by the utility-based metric. Figure 1 shows

that the policy minimizing the ad-hoc loss following a flattening of the Phillips curve no

longer minimizes the utility-based metric (i.e. a change from ϕ−1
1 to ϕ−1

2 ). In this case, the

loss is the vertical distance from the minimum of the solid line to the dashed line. The loss
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arising from a flatter Phillips curve under this numerical specification is quite modest, on

the order of just a few percent.

As another example, Figure 2 uses the boundaries of the 90-percent credibility intervals

from Lubik and Schorfheide (2004) for the slope of the Phillips curve, where κ1 = 1.07

(pre-Volcker) and κ2 = .27 (post-Volcker). In this case, an ad-hoc λ that minimizes the

utility-based loss in one state can generate a substantial welfare loss in the event that the

slope of the Phillips curve changes. If λ = ϕ−1
1 and the Phillips curve flattens, then the

suboptimal policy results in a relatively large welfare decline, equal to roughly 50 percent of

the utility-based value. However, Figure 2 also highlights an asymmetry. If λ = ϕ−1
2 and

the Phillips curve steepens, the welfare decline is relatively modest.

7. Conclusion

This paper shows that a change in the cost of price adjustment can generate instability in

a forward-looking Phillips curve relation. In particular, the coefficients on both expected

inflation and marginal cost, or the output gap, are subject to change in coordination with

changes in the state governing the cost of adjusting prices.

In addition, Phillips curve instability has implications for optimal monetary policy. Un-

der an ad-hoc welfare criterion, the coefficient in the optimal targeting rule changes when

the slope of the Phillips curve changes. However, since the microfoundations of the firm’s

optimization problem are made explicit, it is possible to derive a utility-based welfare met-

ric. A novel feature of this metric is that it has a state-dependent weight on the output
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gap term. The weight depends inversely on the cost of price adjustment, so in the low cost

state, relatively more weight is placed on output stabilization. The implication for optimal

monetary policy under discretion is that the optimal targeting rule should not vary the

systematic component of policy, standing in contrast to the prescription coming from the

ad-hoc criterion.
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APPENDIX

A. Deriving the Phillips Curve Under Changing Costs

of Price Adjustment

For st = 1, the conditional first-order condition after distributing the ϕ(st+1) term is

0 = (1 − θt) Δt

(
Pt (j)

Pt

)−θt
(
Yt

Pt

)
+ θtΔtΨt

(
Pt (j)

Pt

)−θt−1 (
Yt

Pt

)
− (A-1)

ϕ (1)Δt

(
Pt (j)

ΠPt−1 (j)
− 1

) (
Yt

ΠPt−1 (j)

)
+

βp11ϕ (1)Et

[
Δt+1

(
Pt+1 (1, j)

ΠPt (j)
− 1

) (
Pt+1 (1, j)Yt+1 (1)

ΠPt (j)
2

)]
+

β (1 − p11)ϕ (2)Et

[
Δt+1

(
Pt+1 (2, j)

ΠPt (j)
− 1

) (
Pt+1 (2, j)Yt+1 (2)

ΠPt (j)
2

)]
,

where Pt+1 (i, j) represents the nominal price for firm j when st+1 = i and Yt+1(i) represents

final output when st+1 = i. An analogous first-order condition exists for st = 2, except p11 is

replaced with (1 − p22) and (1 − p11) is replaced with p22. Using (A− 1), the firm’s optimal

pricing condition for st = 1, after imposing Pt (j) = Pt, is given by

0 = (1 − θ)Δt

(
Yt

Pt

)
+ θΔtΨt

(
Yt

Pt

)
− ϕ (1)Δt

(
Pt

ΠPt−1
− 1

) (
Yt

ΠPt−1

)
+ (A-2)

βp11ϕ (1)Et

[
Δt+1 (1)

(
Pt+1 (1)

ΠPt
− 1

) (
Pt+1 (1) Yt+1 (1)

ΠPt
2

)]
+

β (1 − p11)ϕ (2)Et

[
Δt+1 (2)

(
Pt+1 (2)

ΠPt
− 1

) (
Pt+1 (2) Yt+1 (2)

ΠPt
2

)]
,

where substituting in Pt/Pt−1 = Πt yields

0 = (1 − θt)Δt + θtΔtΨt − ϕ (1) Δt

(
Πt

Π
− 1

) (
Πt

Π

)
+ (A-3)

βp11ϕ (1)Et

[
Δt+1 (1)

(
Πt+1 (1)

Π
− 1

) (
Πt+1 (1) Yt+1 (1)

ΠYt

)]
+

β (1 − p11)ϕ (2)Et

[
Δt+1 (2)

(
Πt+1 (2)

Π
− 1

) (
Πt+1 (2) Yt+1 (2)

ΠYt

)]
.
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Log-linearizing around the constant steady state yields

0 =
(
1 − θ

(
1 + θ̂t

))
Δ

(
1 + Δ̂t

)
+ θ

(
1 + θ̂t

)
Δ

(
1 + Δ̂t

)
Ψ(1 + ψt) − (A-4)

ϕ (1)Δ
(
1 + Δ̂t

)
πt (1 + πt) +

βp11ϕ (1)Et

[
Δ

(
1 + Δ̂t+1 (1)

)
πt+1 (1) (1 + πt+1 (1)) (1 + Yt+1 (1)) (1 − Yt)

]
+

β (1 − p11)ϕ (2)Et

[
Δ

(
1 + Δ̂t+1 (2)

)
πt+1 (2) (1 + πt+1 (2)) (1 + Yt+1 (2)) (1 − Yt)

]
,

where πt = log (Πt/Π), ψt = log (Ψt/Ψ) , Δ̂t = log (Δt/Δ) , and θ̂t = log (θt/θ) . Values

without a time subscript are steady-state values. Eliminating higher-order terms and using

Ψ = θ−1 (θ − 1) yields

πt = βp11Et [π1,t+1] + (1 − p11) β
ϕ2

ϕ1
Et [π2,t+2] +

(θ − 1)

ϕ1
(ψ1t + ut) , (A-5)

where ut = − (θ − 1)−1 θ̂t. The same approach is taken for st = 2, where the general

representation can be rewritten as (12).

B. Deriving the Utility-Based Welfare Criterion

If prices are fully flexible, then monopolistic firms set prices using(
Pt (j)

Pt

)
=

θt

(θt − 1)

Wt

Pt
,

where in a symmetric equilibrium

(Wt/Pt) = μ−1
t .

Substituting this expression into (15) and using Yt = Ct = Ht gives

(1 + ν)
1

μt
=

Y η
t

Y −σ
t

,
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where (1 + ν) μ−1 = 1 by construction, where then solving for the steady-state yields the

efficient steady-state level for production of Y ∗ = 1. Under the labor subsidy, monetary

policy focuses on stabilization policies, versus policies to undo the monopolistic distortion.

Also, in the steady state, the monopolistic firm is not adjusting its price, so the changing

parameter governing the costs of price adjustment does not create any distortions.

Substituting (17) into (13) yields

U (Yt,Πt, st) =

(
Yt − ϕ(st)

2
(Πt − 1)2

)1−σ

1 − σ
− Y 1+η

t

1 + η
. (A-6)

The second-order approximation to the first term of the representative agent’s period utility

function is given by(
Yt − ϕ(st)

2
(Πt − 1)

2
)1−σ

1 − σ
≈ Y 1−σ

1 − σ
+ Y 1−σ

(
Yt − Y

Y

)
− 1

2
σY 1−σ

(
Yt − Y

Y

)2

(A-7)

−ϕ (st)

2
Y −σ (Πt − 1)2 . (A-8)

Second-order approximations of the relative deviations in terms of the log deviations are

Yt − Y

Y
≈ ŷt +

1

2
ŷ2

t (A-9)

Πt − 1 ≈ π̂t +
1

2
π̂2

t (A-10)

which yields(
Yt − ϕ(st)

2
(Πt − 1)

2
)1−σ

1 − σ
≈ Y 1−σ

1 − σ
+ Y 1−σ

(
ŷt +

1

2
ŷ2

t

)
−

1

2
σY 1−σ

(
ŷt +

1

2
ŷ2

t

)2

− ϕ (st)

2
Y −σ

(
πt +

1

2
π2

t

)2

.

Removing terms higher than second order and denoting terms independent of policy as t.i.p.
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yields (
Yt − ϕ(st)

2
(πt − 1)2

)1−σ

1 − σ
≈ Y 1−σYt +

1

2
Y 1−σ ŷ2

t −
1

2
σY 1−σ ŷ2

t (A-11)

−ϕ (st)

2
Y −σπ2

t + t.i.p. (A-12)

The second-order approximation to the second term of the utility function is

Y 1+η
t

1 + η
≈ Y 1+η

(
Yt − Y

Y

)
+

1

2
ηY 1+η

(
Yt − Y

Y

)2

+ t.i.p. (A-13)

Using second-order approximations in terms of log deviations yields

Y 1+η
t

1 + η
≈ Y 1+η

(
ŷt +

1

2
ŷ2

t

)
+

1

2
ηY 1+η

(
ŷt +

1

2
ŷ2

t

)2

+ t.i.p. (A-14)

= Y 1+ηŷt +
1

2
Y 1+ηŷ2

t +
1

2
ηY 1+ηŷ2

t + t.i.p. (A-15)

Combining both components of the utility function and removing t.i.p. yields

U (Yt, πt, st) ≈ Y 1−σ ŷt +
1

2
Y 1−σ ŷ2

t −
1

2
σY 1−σ ŷ2

t −
1

2
ϕ (st)Y

−σπ2
t − Y 1+η

(
ŷt +

1

2
(1 + η) ŷ2

t

)
.

Rearranging terms and setting Y = 1 yields

U (Yt, πt, st) ≈ Y 1−σŷt +
1

2
Y 1−σ ŷ2

t −
1

2
σY 1−σŷ2

t −
1

2
ϕ (st)Y

−σπ2
t − Y 1+η

(
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2
(1 + η) ŷ2

t

)
,

= −1

2
ϕ (st)

(
π2

t +
(σ + η)

ϕ (st)
ŷ2

t

)
.

C. Solutions for Inflation and Output

To solve for inflation and output under the ad-hoc metric, I first use the system of targeting

rules in (20) , which in state-contingent notation is[
λp11 λ (1 − p11)

λ (1 − p22) λp22

] [
Etx1t+1

Etx2t+1

]
=

[ −κ1p11 −κ2 (1 − p11)
−κ1 (1 − p22) −κ2p22

][
Etπ1t+1

Etπ2t+1

]
,
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and solve in terms of the expected conditional output gaps, yielding

Etx1t+1 = −κ1

λ
Etπ1t+1, (A-16)

Etx2t+1 = −κ2

λ
Etπ2t+1. (A-17)

Substituting (20), (A− 16) and (A− 17) into the Phillips curve (19) yields a dynamic system

in x1t and x2t[
x1t

x2t

]
=

[
p11γ1 (1 − p11) γ1

κ1ϕ2

κ2ϕ1

(1 − p22) γ2
κ2ϕ1

κ1ϕ2
p22γ2
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Etx1t+1

Etx2t+1

]
−

[
κ1 (λ+ κ2

1)
−1

κ2 (λ+ κ2
2)

−1

]
et, (A-18)

where γi = λβ (λ+ κ2
i )

−1
and i = 1, 2.

Using the method of undetermined coefficients on the minimum set of state variables,

which are st and et, solutions to (A− 18) have the form

xit = aiet, (A-19)

for i = 1, 2. Substituting these solutions into (20) yields the following solution for inflation

πit = −λai

κi
et, (A-20)

for i = 1, 2. To find the unknown coefficients, ai for i = 1, 2, substitute the above solutions

back into (A− 18) to obtain the following relationships between parameters[
(1 − p11γ1ρ) − (1 − p11) γ1

κ1ϕ2

κ2ϕ1
ρ

− (1 − p22) γ2
κ2ϕ1

κ1ϕ2
ρ (1 − p22γ2ρ)

][
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a2

]
=

[
− κ1

λ+κ2
1− κ2

λ+κ2
2

]
. (A-21)

Under the utility-based metric, performing the same steps yields the following[
(1 − p11βδ1ρ) − (1 − p11)βδ1

ϕ2

ϕ1
ρ

− (1 − p22)βδ2
ϕ1

ϕ2
ρ (1 − p22βδ2ρ)
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1
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2

]
=

[
(1 − θ) δ1
(1 − θ) δ2

]
, (A-22)

where δi = (1 − (1 − θ)κi)
−1 and i = 1, 2.

26



0 0.1 0.2
0

5

10

15

20

25

30

35

40

45

50

λ

%
 L

os
s

 

 

κ
1
 = .725

κ
2
 = .58

φ
2
−1 φ

1
−1

Figure 1: Welfare Loss Under Policy Based on an Ad-hoc Loss Function
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Figure 2: Welfare Loss Under Policy Based on an Ad-hoc Loss Function
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