
 

Optimal Inflation for the U.S. 

Economy 

 
Roberto M. Billi 

November 2008; Revised December 2010 

RWP 07-03 



Optimal Inflation for the U.S. Economy1 

Roberto M. Billi2 

First version: April 2007 

This version: December 2010 

RWP 07-03 

Abstract: This paper studies the optimal long-run inflation rate (OIR) in a small New-

Keynesian model, where the only policy instrument is a short-term nominal interest rate that 

may occasionally run against a zero lower bound (ZLB). The model allows for worst-case 

scenarios of misspecification. The analysis shows first, if the government optimally commits, the 

OIR is below 1 percent annually, and the policy rate is expected to hit the ZLB as often as 7 

percent of the time. Second, if the government re-optimizes each period, the OIR rises markedly 

to 17 percent, which suggests a discretionary policymaker is willing to tolerate a very large 

“inflation bias” of 16 percent to avoid hitting the ZLB. Third, if the government commits only to 

an inertial Taylor rule, the inflation bias is eliminated at very low cost in terms of welfare for the 

representative household. The analysis suggest that if governments cannot make credible 

commitments about future policy decisions, a 2 percent long-run inflation goal may provide 

inadequate insurance against the ZLB. 
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1 Introduction

Central banks have widely articulated long-run inflation goals near 2 percent annually. But in

light of the economic tumult of the past few years, during which most major central banks pushed

short-term nominal interest rates close to zero, further analysis of the optimal inflation rate has

moved front and center. Some prominent economists– for instance, Blanchard, Dell’Ariccia, and

Mauro (2010) and Williams (2009)– have called for central banks to consider raising their long-

run inflation goals. Shifting inflation goals up would tend to raise the average level of nominal

interest rates, which gives more room to lower interest rates in response to a bad shock before

running against the zero lower bound (ZLB) on nominal interest rates.

To shed light on such a proposal, this paper studies the optimal long-run inflation rate

(OIR) for the United States, accounting for the ZLB constraint. The analysis is based on a

small New-Keynesian model, featuring lagged inflation in the Phillips curve. Such a model

does not capture directly all the many relevant factors.1 The analysis, however, allows for

potential model misspecification, as greater misspecification leads to greater uncertainty about

the response to shocks. Given that much of this uncertainty cannot be quantified, the paper

studies the robustness of the results to extremely adverse scenarios of model misspecification with

the robust-control approach of Hansen and Sargent (2008). This approach provides insurance

against a wide variety of forms of misspecification, including parameter uncertainty, distorted

expectations, and more adverse shocks.

In this standard model, the only policy instrument is a short-term nominal interest rate that

may occasionally run against the ZLB. Three policy regimes are considered. First, the paper

examines, as a benchmark, the regime in which the government optimally commits in advance to

a plan for all future policy decisions. Second, the paper studies the opposite regime in which the

1See Billi and Kahn (2008) for a discussion of other factors that central banks should also consider in formu-
lating inflation goals. Some factors, such as non-neutralities in the tax system and transactions frictions related
to the demand for money, suggest inflation goals of zero or below. In contrast, others, such as measurement bias
in inflation, asymmetries in wage setting, and the potentially severe costs of debt-deflation, suggest inflation goals
higher than zero. On balance, most policymakers agree they should aim for inflation rates higher than zero.
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government re-optimizes each period in a discretionary fashion. Third, the paper also considers

a regime in which the government commits only to a simple, interest-rate rule along the lines of

Taylor (1993).

To facilitate comparison of the results across the three regimes, as well as with past research on

the ZLB, the “classic” inflation bias of discretionary policy– studied by Kydland and Prescott

(1977) and Barro and Gordon (1983)– has been eliminated from the analysis by positing an

output subsidy that offsets the distortions from market power. In all three regimes, therefore,

the model implies conveniently that if the existence of the ZLB is ignored the OIR is equal

to zero, because this is a “cashless” economy of the kind studied in Woodford (2003).2 After

accounting for the ZLB, the model predicts that the OIR is higher than zero. Moreover, the OIR

will depend crucially on the policy regime and on the extent of the model misspecification.

The model produces three main results, one for each regime. First, if the government opti-

mally commits, the OIR is very low, and the policy rate is expected to occasionally run against

the ZLB. This result is very robust to model misspecification. Intuitively, a government that

commits can lower real interest rates and stimulate the economy by creating inflationary expec-

tations, which mitigates the adverse effects caused by the existence of the ZLB, as originally

emphasized by Krugman (1998). Under this policy, the OIR is between 0.2 percent (no misspec-

ification) and 0.9 percent (extreme misspecification). In addition, the policy rate is expected to

hit the ZLB between 3.7 percent and 7.0 percent of the time.

Second, if the government re-optimizes each period, the OIR is much higher, and may even

be extremely high when accounting for model misspecification. A discretionary government

cannot counter downward pressures on inflation by creating inflationary expectations, but a high

long-run inflation goal can prevent a bad shock from pushing the economy into a calamitous

deflationary spiral– with rising rates of deflation sending real interest rates soaring and the

2This holds true also when allowing for distorted expectations, which is reminiscent of a similar conclusion
reached by Woodford (2010). By contrast, in a model with transactions frictions related to the demand for
money and absent the ZLB, the Friedman rule applies– the OIR is then negative and equal in absolute value to
the steady-state real interest rate.
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economy into a tailspin. Under this policy, the OIR rises markedly to between 13.4 percent (no

misspecification) and 16.7 percent (extreme misspecification), which is so high that the policy rate

is no longer expected to hit the ZLB. This suggests that, to avoid hitting the ZLB, a discretionary

policymaker is willing to tolerate an inflation bias between 13.2 percent (no misspecification) and

15.8 percent (extreme misspecification).

Third, if the government commits only to a “standard” Taylor rule that includes current

values of inflation and output, the OIR is somewhat lower than under discretionary policy. But

if the government commits to a version of the Taylor rule that also includes the past level of

the policy rate, the OIR is much lower. Such an inertial Taylor rule can generate expectations

about the future path of policy, which helps mitigate the effects of the ZLB. Under the standard

Taylor rule, the OIR is between 8.0 percent (no misspecification) and 9.8 percent (extreme

misspecification). But under the inertial Taylor rule, the inflation bias is eliminated at very low

cost in terms of welfare for the representative household.

In summary, the analysis suggest that if governments cannot make credible commitments

about future policy decisions, a strong case can be made for the desirability of long-run inflation

goals higher than 2 percent, as insurance against the ZLB. In contrast, if governments can shape

expectations about the future path of policy by following an inertial Taylor rule, the desirability

of long-run inflation goals as high as 2 percent is much less clear.

There is an important literature that considers inflation goals in the presence of the ZLB.

In this context, the paper makes two notable contributions. First, it introduces the robust-

control approach of Hansen and Sargent (2008), which provides insurance against extremely

adverse scenarios of model misspecification. The paper shows that greater robustness to model

misspecification argues for a higher long-run inflation goal in the presence of the ZLB.

As a second contribution, the paper introduces a fairly high degree of (endogenous) inflation

persistence in the Phillips curve, which is consistent with the empirical data. This feature is

key in generating the very large inflation bias found in this study, as opposed to the deflation

bias emphasized in past studies of optimal policy in the presence of the ZLB, based on the small
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New-Keynesian model. Intuitively, inflation persistence fuels a deflationary spiral once the ZLB

has been reached, and weakness in the economy puts downward pressure on inflation. And when

inflation is fairly persistent, a discretionary government, which does not possess the same ability

to create inflationary expectations as a government that commits, must have a high long-run

inflation goal to ensure the economy reverts to a stable equilibrium rather than entering an

unstable deflationary spiral.

The optimal policy under commitment was first studied by Eggertsson and Woodford (2003)

and Jung, Teranishi, and Watanabe (2005) in the simplest version of the New-Keynesian model.

Both papers assume a stochastic process for the natural rate of interest with an absorbing state.

Billi (2005) and Adam and Billi (2006) characterized the optimal policy for a more general

stochastic process like the one studied here. Those papers show that if the government optimally

commits, it can to a large extent counter the adverse effects associated with the ZLB. This paper

shows that such well-known result is very robust to model misspecification.

Under optimal discretionary policy, Eggertsson (2006) and Adam and Billi (2007) find that

the ZLB leads to a chronic deflation problem, rather than an inflation bias as in this paper.

Eggertsson (2006) and Jeanne and Svensson (2007), moreover, discuss several solutions to the

deflation problem, such as deficit spending and purchases of various private assets, which help

create inflationary expectations. These other policy instruments, presumably, would lower the 17

percent long-run inflation goal under discretion found in this paper. The analysis, thus, clarifies

why governments may resort to such alternative policy measures to avoid deflation and the ZLB.

The analysis suggests that a discretionary policymaker is very “afraid”of a deflationary spiral,

so much so, that she is willing to tolerate a very large inflation bias, assuming she has no access

to any alternative policy instruments. In practice, governments have access to these instruments

and therefore may use them aggressively, as seen in the past few years.

Another set of papers simulate large-scale models in which the government commits to a ver-

sion of the Taylor rule. Reifschneider andWilliams (2000) and Coenen, Orphanides, andWieland

(2004) find a 2 percent inflation goal to be an adequate buffer against the ZLB having noticeable
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adverse effects on the macroeconomy. By contrast, Williams (2009) argues that if recent events

are a harbinger of a significantly more adverse macroeconomic climate than experienced over

the past two decades, it might be prudent to raise long-run inflation goals, perhaps even to 4

percent. Yet these authors do not consider the costs associated with a higher average inflation

rate and therefore stop short of finding optimal inflation goals, as done in this paper.

The second section of the paper describes the model, which is calibrated to the U.S. economy

in the third section. The fourth section studies the benchmark outcome achieved by the optimal

commitment. And the fifth section examines the value of commitment. The appendix contains

the technical details.

2 The model

This paper adopts the small New-Keynesian model– which is discussed in depth in Clarida,

Galí, and Gertler (1999), Woodford (2003) and Galí (2008)– and the robust-control approach

developed by Hansen and Sargent (2008). These two building blocks are first used to form a

robust planning problem, which will allow characterizing the optimal commitment. The problem

is then modified for the purpose of examining the value of commitment.

2.1 The robust planning problem

The first building block is the small New-Keynesian model, in which the policymaker sets the

short-term nominal interest rate, and thereby affects the behavior of the private sector. The

private sector consists of a representative household, which supplies labor and consumes goods,

and of firms, which produce goods in monopolistic competition and face restrictions on the fre-

quency of price changes as in Calvo (1983). In addition to this standard model for policy analysis,

we explicitly take into account that the short-term nominal interest rate may occasionally run

against the ZLB.

The second element is the robust-control approach, in which the policymaker recognizes that
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its own model is misspecified, but cannot quantify precisely the nature of the misspecification.

The policymaker also recognizes that the private sector’s expectations are distorted, because the

private sector forms expectations based on the policymaker’s misspecified model.3 Hence, the

policymaker will choose policies that are expected to perform well in very adverse or “worst-case”

scenarios, in which private-sector expectations are severely distorted.

Based on these two components, we assume that a Ramsey planner– a benevolent govern-

ment, with the ability to fully commit to its policy announcements– chooses the inflation rate,

the output gap, and the short-term nominal interest rate to maximize welfare for the represen-

tative household as in Khan, King, and Wolman (2003). At the same time, the planner also

chooses worst-case shocks to minimize welfare. Then a robust optimal policy is the solution to

such a max-min problem.4 Consideration of the max-min problem is a simple way of ensuring

the policy chosen performs well in a worst-case scenario.

Then the robust planning problem takes the form:

max
{πt,xt,it}∞t=0

min
{w1t,w2t}∞t=0

− Ê0
∞∑
t=0

βt
[
(πt − γπt−1)2 + λx2t −Θ

(
w21t + w22t

)]
(1)

subject to:

πt − γπt−1 = βÊt (πt+1 − γπt) + κxt + ut (2)

xt = Êtxt+1 − ϕ
(
it − Êtπt+1 − rnt

)
(3)

ut = ρuut−1 + σεu (εut + w1t) (4)

rnt = (1− ρr) rss + ρrr
n
t−1 + σεr (εrt + w2t) (5)

it ≥ 0. (6)

3Still, the private sector’s model is not misspecified– as misspecification is not embedded in the derivation of
the small New-Keynesian model.

4Alternatively, the problem can be thought of as a Nash game between a planner– who sets the inflation rate,
the output gap, and the short-term nominal interest rate to maximize welfare– and a malevolent agent– who sets
worst-case shocks to frustrate the planner’s objective. The game between them is a zero-sum game.
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In this problem, Êt denotes the expectations operator conditional on information available

at time t. The accent is added above the expectations operator to indicate that expectations are

formed in a worst-case scenario.

Regarding the planner’s choice variables, πt is the inflation rate; xt is the output gap, i.e.,

the deviation of output from its flexible-price steady state; and it is the nominal interest rate.

The planner also chooses the worst-case shocks, w1t and w2t, which represent misspecification

that enters into the dynamics of the model’s state variables– equations (4) and (5)– and into the

planner’s objective function– equation (1). Intuitively, the worst-case shocks distort the law of

motion as a way to help derive policies that will be robust against misspecification in the behavior

of the private sector as described by the model, while the presence of the worst-case shocks in

the objective indicates the planner’s desire to guard against such model misspecification.

Because the small New-Keynesian model is developed from explicit micro-foundations, the

objective function can be derived as a second-order approximation of the expected life-time utility

of the representative household. The resulting welfare-theoretic objective (1) is quadratic in the

unanticipated component of inflation and in the output gap. In this objective, β ∈ (0, 1) is the

discount factor. And the weight assigned to the goal of output-gap stability

λ =
κ

θ
> 0

is a function of the structure of the economy, where θ > 1 is the price elasticity of demand

substitution among differentiated goods produced by firms in monopolistic competition.

Equation (2) is a log-linearized Phillips curve, which describes the optimal price-setting be-

havior of firms under staggered price setting. The Phillips curve’s slope

κ =
(1− α) (1− αβ)

α

ϕ−1 + ω

1 + ωθ
> 0

is a function of the structure of the economy, where ω > 0 is the elasticity of a firm’s real marginal

cost with respect to its own output level. Each period, a share α ∈ (0, 1) of randomly picked
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firms cannot adjust their prices, while the remaining (1− α) firms get to choose prices optimally.

Prices that are not optimized are indexed to the most recent aggregate price index, and γ ∈ [0, 1)

is the degree of price indexation.5 And ut is a mark-up shock, which results from variation over

time in the degree of monopolistic competition between firms.

Equation (3) is a log-linearized Euler equation, which describes the representative household’s

expenditure decisions. In the Euler equation, ϕ > 0 is the real-rate elasticity of the output gap,

i.e., the intertemporal elasticity of substitution of household expenditure. And rnt is a natural

rate of interest shock.6

Equations (4) and (5) describe the evolution of the exogenous shocks, ut and rnt , which follow

AR(1) stochastic processes with first-order autocorrelation coeffi cients ρj ∈ (−1, 1) for j = u, r.

The steady-state real interest rate rss is equal to 1/β−1, such that rss ∈ (0,+∞). And σεjεjt are

the innovations that buffet the economy, which are independent across time and cross-sectionally,

and normally distributed with mean zero and standard deviations σεj ≥ 0 for j = u, r.

As can be seen in equations (4) and (5), the worst-case shocks distort the evolution of the

exogenous shocks, which, in turn, affect the behavior of the private sector. As a consequence,

the worst-case shocks distort private-sector expectations. Intuitively, the distortion of private-

sector expectations captures the policymaker’s concern that it may not be able to rely upon

expectations to be shaped by its policy commitments in precisely the way that it expects them

to be. The parameter Θ ≥ 0 in objective (1) determines the extent of the distortion, i.e., the

distance between the policymaker’s misspecified model with or without worst-case shocks.7 If

Θ→ +∞, the worst-case shocks are completely constrained in objective (1) and therefore cannot

distort expectations. But if Θ becomes small, the worst-case shocks are less constrained and a

more severe distortion can arise.
5If price indexation is full (γ equal to 1) the model is not well defined– as then the change in the inflation rate

matters in objective (1) and the inflation rate becomes nonstationary.
6The shock rnt summarizes all shocks that under flexible prices generate variation in the real interest rate; it

captures the combined effects of preference shocks, productivity shocks, and exogenous changes in government
expenditures.

7The paper reports outcomes under the worst-case equilibrium, in which the distortions associated with the
worst-case shocks fully materialize, so to provide the most insurance against model misspecification.
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Finally, equation (6) is the ZLB on nominal interest rates. Ignoring the existence of the ZLB

constraint, the simpler problem (1)-(5) can be solved with standard linear-quadratic methods.

By contrast, a global numerical procedure must be used to solve the problem accounting for the

ZLB and a stochastic process like the one studied here.8

2.2 Robustness under limited commitment

The above problem allows characterizing the optimal commitment regime, in which a plan for

future policies is decided once and for all. With some modifications, however, it also allows

characterizing optimal policies under limited commitment, in which policy decisions are made

afresh each period. In particular, first discretionary (sequential) optimization is considered, then

commitment to a Taylor rule.

The aim is to study the outcome when an optimizing government chooses policy each period

without making any commitment about future policy decisions. To do this, we consider a Markov-

perfect equilibrium of the non-cooperative “game”among successive governments, each of whom

rationally anticipates how future decisions depend on the current outcome. The concept of a

Markov-perfect equilibrium– formally defined byMaskin and Tirole (2001)– has been extensively

applied in the monetary policy literature. The basic idea is that policy decisions at any date

depend only on information relevant for determining the governments’success at achieving their

goals from that date onward.9

The existence of the ZLB gives the discretionary governments an incentive to tolerate a higher

rate of inflation than would be chosen under the optimal commitment. Once the ZLB has been

reached and weakness in the economy puts downward pressure on inflation, the government

that commits can lower real interest rates and stimulate the economy by creating inflationary

expectations. But the discretionary government, which does not possess that same ability to

8See appendix A.1 for details.
9There can be other equilibria of this game, but the paper does not seek to characterize them. Rather than

arguing that a bad equilibrium may be an inevitable outcome of discretionary optimization, the aim is to design
policies to prevent such an outcome.
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create inflationary expectations, may need a high long-run inflation goal to prevent a bad shock

from pushing the economy into a deflationary spiral from which there is no escape.

Based on these considerations, the welfare-theoretic objective (1) is replaced with a modified

objective function

max
(πt,xt,it)

min
(w1t,w2t)

− Êt
∞∑
j=0

βj
[
(πt+j − γπt+j−1 − (1− γ) π∗)2 + λx2t+j −Θ

(
w21t+j + w22t+j

)]
, (7)

where now policy decisions are made afresh each period t. The key departure from the welfare-

theoretic objective is the introduction of a steady-state inflation goal, π∗ ≥ 0, which is allowed to

be higher than zero– this goal is implicitly assumed to be equal to zero in the welfare-theoretic

objective (1). The goal is here chosen by the government, once and for all in t = 0, in order to

satisfy the modified objective (7). To do so, the goal must be high enough to ensure that a stable

equilibrium exists toward which the economy tends to revert. Therefore, we will assume the

discretionary government is able and willing to commit to π∗ if it is feasible to attain it without

violating the ZLB constraint.10

It is reasonable to assume the discretionary government will commit to a steady-state inflation

goal higher than zero, perhaps as a result of a legislative mandate to pursue price stability. Indeed,

absent the ZLB, the government would chose π∗ equal to zero, and then the modified objective

(7) coincides with the welfare-theoretic objective (1). In the presence of the ZLB, however, the

government has a powerful incentive to chose π∗ higher than zero, because then it will raise

welfare for the representative household by an infinite amount. In fact, if π∗ is too low to prevent

a bad shock from pushing the economy into a disastrous deflationary spiral, the representative

household suffers an infinite welfare loss– as then inflation and output volatility are unboundedly

10Note that π∗ cannot be determined analytically, rather it must be determined numerically. As argued in
Williams (2009), the paper includes a bias in the notional inflation goal for it to equal the actual inflation goal.
In addition, as the aim is to find optimal inflation goals, which maximize welfare from the point of view of the the
representative household, the paper takes into consideration the costs associated with a higher average inflation
rate. Namely, welfare is evaluated, by averaging across 5 · 103 stochastic simulations each 103 periods long after
a burn-in period, based on objective (7) with a π∗ of zero. This value is then converted into a steady-state
consumption loss, which is reported in the tables. See appendix A.2 for further details.
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large. Yet the aim here is precisely to design policies to prevent such a terrible outcome, which

may even require committing to a π∗ much higher than zero, as the numerical results will show.

In this sense, π∗ can be thought of as an “inflation bias”that, in the presence of the ZLB,

the discretionary government is willing to tolerate to ensure that the economy reverts to a stable

equilibrium rather than entering an unstable deflationary spiral. Note that the outcome is not

completely independent of past policy decisions due to lagged inflation in the Phillips curve.

The classic inflation bias of discretionary policy is not present in this study– as the goal for the

output gap is zero in the objective.11

Besides optimal discretionary policy, we also consider a situation in which policy decisions

are made through commitment to a version of the Taylor rule. It is reasonable to assume that

commitment to a simple policy rule of this kind represents the only feasible form of commitment,

perhaps because of diffi culties on the part of the policymaker of explaining to the general public

the nature of its commitment in a more complex situation– such as the optimal commitment

regime, in which the policymaker commits to a fully specified plan for all future policy decisions.

We continue to assume that policy decisions are made afresh each period based on the modified

objective (7). But we also assume that, in choosing the short-term nominal interest rate, the

government follows the prescriptions of a robust Taylor rule of the form

it = max [0, (1− φi) (rss + π∗) + φiit−1 + φπ (πt − π∗ + ω1w1t) + φx (xt − x∗ + ω2w2t)] , (8)

where φi ≥ 0 is the response coeffi cient on the past level of the policy rate, and φπ, φx,≥ 0 are

11This requires steady-state output under flexible prices to be effi cient, which is achieved thanks to an output
subsidy that offsets the distortions from market power. Absent such a subsidy, however, the term λx2t+j in the

objective would be replaced with λ (xt+j − x̄)
2, where x̄ ≥ 0 is increasing in the size of the distortions from

market power. And, in turn, the classic inflation bias of discretionary policy is proportional to x̄, as shown in
Woodford (2003). The intuition for this well-know result is that the discretionary policymaker fails to internalize
the long-term inflationary consequences of any attempt to push household consumption above the level consistent
with no inflationary pressures in the economy. The policymaker that commits, however, does not succumb to
such temptations to overstimulate the economy.
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the response coeffi cients on the current values of inflation and the output gap in deviation from

their goals. Moreover, π∗ is the steady-state inflation goal, which is chosen just as in the modified

objective (7). And x∗ is the steady-state output gap, which is consistent with an inflation rate

of π∗ in Phillips curve (2), that is x∗ = (1− γ) (1− β)κ−1π∗.

The max operator captures the restriction that the rule cannot violate the ZLB constraint.

The key benefit of a Taylor rule with policy-rate inertia, or inertial Taylor rule, is that it promises

to keep the policy rate low in the future when there is weakness in the economy and inflation is

too low. Keeping the policy rate low causes inflation to rise above the long-run goal following an

episode of excessively low inflation. Importantly, the expectation of higher inflation lowers the

expected real interest rate implied by the ZLB. Following such a rule, therefore, potentially can

improve the economic outcome relative to that achieved by a discretionary optimization.

In addition, the worst-case shocks enter the rule directly to ensure the policy chosen is ro-

bust to model misspecification (ω1, ω2 ≥ 0). The rule empowers the government by providing a

systematic character to its policy decisions. At the same time, therefore, the worst-case shocks

should counteract any systematic character in the government’s decision making process to de-

liver robust policies. The intuition for why the rule responds directly to the worst-case shocks is

as follows. The government can shape expectations by committing to the rule, while the presence

of the worst-case shocks in the rule captures the government’s concern that it may not be able

to rely upon expectations to be shaped in precisely the way that it expects them to be.12

Finally, the modified problem (2)-(8) will allow characterizing optimal policies under limited

commitment. Comparing such policies to the optimal commitment regime, we will examine the

value of commitment.
12In this sense the rule is robust to model misspecification. Developing a general theory of robust simple policy

rules is outside the scope of this paper. Still, the paper may be a useful starting point for future research in
that direction. Note that (2)-(8) is a “constrained”discretionary optimization, in which tying the government’s
hands by imposing that it follow a rule can raise welfare for the representative household. By contrast, under a
robust optimal commitment, as studied by Giordani and Söderlind (2004) and Dennis, Leitemo, and Söderström
(2009), imposing any rule on the government can only lower welfare from the social optimum. This is certainly
not a criticism to these authors, as they adopt the latter setting for the study of other important issues. While
the aim here is just to show how a simple policy rule such as the Taylor rule improves upon the outcome of a
discretionary optimization.
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Definition Parameter Value
Discount factor β 0.9914
Real-rate elasticity of the output gap ϕ 6.25
Share of firms keeping prices fixed α 0.66
Price elasticity of demand θ 7.66
Elasticity of a firms’marginal cost ω 0.47
Slope of the aggregate-supply curve κ 0.024
Weight on output gap in the objective λ 0.003
Degree of price indexation γ 0.90
Taylor rule response to inflation φπ 1.5
Taylor rule response to output gap φx 0.5
Taylor rule response to past policy rate φi 0
Steady-state real interest rate rss 3.50% annually
Std. dev. of real-rate shock innovation σεr 0.24%
Std. dev. of mark-up shock innovation σεu 0.30%
AR(1)-coeffi cient of real-rate shock ρr 0.80
AR(1)-coeffi cient of mark-up shock ρu 0.00

Note: Quarterly values unless otherwise indicated

Table 1: Baseline calibration

3 Calibration

This section calibrates the model to the U.S. economy, with the baseline parameter values shown

in table 1. In addition, it addresses how to allow for insurance against extremely adverse scenarios

of model misspecification.

The values of the main structural parameters (ϕ, α, θ, ω, and the resulting κ and λ) are taken

from tables 5.1 and 6.1 of Woodford (2003). The degree of price indexation γ is equal to 0.9,

which is consistent with the estimates of Giannoni and Woodford (2005) and Milani (2007),

assuming rational expectations.

The parameters that describe the exogenous shocks (rss, σεr, σεu, ρr and ρu) are estimated over

the period 1983:Q1-2002:Q4, with the same approach of Rotemberg and Woodford (1997) and

Adam and Billi (2006).13 Specifically, the predictions of an unconstrained VAR in an inflation

rate, an output gap, and a nominal interest rate are used to estimate expectations.14 The

13The quarterly discount factor β is equal to (1 + rss)
− 1
4 with rss measured at an annualized rate.

14The inflation rate is measured as the continuously compounded rate of change in the GDP chain-type price
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estimated expectations along with the actual data are plugged into equations (2) and (3). The

equation residuals identify historical shocks, which are fitted with AR stochastic processes.

The values of the response coeffi cients in the Taylor rule (φπ, φx and φi) are standard, with

no response to the past level of the policy rate in the baseline. Departing from the baseline,

we will investigate the positive role that policy-rate inertia can play in improving the economic

outcome.15

The value of the parameter Θ is determined with the statistical methods proposed by Hansen

and Sargent (2008) for choosing a reasonable probability of making a model detection error,

p (Θ) ∈ (0, 50%]. A detection error probability is the probability that an econometrician observ-

ing equilibrium outcomes would make an incorrect inference about whether the data originated

from the policymaker’s misspecified model with or without worst-case shocks.

As Θ increases, greater weight is placed on the model as being correct, the worst-case shocks

are more tightly constrained and therefore less able to distort expectations. If Θ → +∞, data

generated from the misspecified model look increasingly like data generated from the “correct”

model and p (Θ) rises to its highest value of 50%. But if Θ becomes small, the effects of model

misspecification are big and therefore more easily detected.

Following the common practice in the literature, we will consider values of p (Θ) as low as

20% to allow for insurance against extremely adverse scenarios of model misspecification.16

index (source BEA). The output gap is measured as actual less potential real GDP (source CBO). And the nominal
interest rate is measured as the average effective federal funds rate (source FRB).
15The values of the expansion parameters (ω1 and ω2) on the worst-case shocks in rule (8) were found searching

over non-negative values, with step size of 0.5. The search showed that setting both parameters to 2 produces the
largest reduction in welfare for the representative household, i.e., the biggest drop in the value of objective (7)
with a π∗ of zero. This, in turn, implies the most insurance against model misspecification, as explained in the
text. The analysis shows that there is a limit to how much insurance can be achieved in the Nash game between
the planner and the malevolent agent, each of whom makes decisions afresh each period. The planner can exploit
intertemporal effects thanks to the lagged policy rate in the rule. The malevolent agent instead cannot exploit
any such intertemporal effects, because there are no lagged worst-case shocks in the model. Nevertheless, the
malevolent agent can still frustrate the planner’s objective enough to provide insurance against extremely adverse
scenarios of model misspecification, as the results show.
16The detection error probabilities are obtained by averaging across 104 stochastic simulations each 80 periods

long– the length of the estimation period used to identify the historical shocks– after a burn-in period. See
appendix A.3 for further details.
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4 Optimal commitment

To determine the benchmark outcome in the above model, this section assumes that there is full

commitment to future policies on the part of the planner. The section first defines the equilibrium

concept in such a policy regime, then illustrates the results. If there is full commitment, the OIR

is very low, and the policy rate is expected to occasionally run against the ZLB. This result is

very robust to model misspecification.

4.1 Equilibrium under optimal commitment

To solve the planning problem (1)-(6) we can write a Lagrangian and derive a system of equi-

librium conditions.17 In equilibrium, the planner chooses a policy based on a response function

ŷ (st) and a state vector st. Because ŷ (st) does not have an explicit representation, only numer-

ical results are available. Before turning to the numerical results, we first explain some features

of the equilibrium and then provide a formal definition.

The planner’s response function is

ŷ (st) = (πt, xt, it,m1t,m2t, w1t, w2t) ⊂ R7.

Based on ŷ (st) the planner chooses a policy. The policy decision includes the inflation rate,

the output gap, and the nominal interest rate (πt, xt, it). It also includes the Lagrange multipliers

(m1t,m2t) on the equations that describe the behavior of the private sector, and the worst-case

shocks (w1t, w2t) that make the policy decision robust to model misspecification.

In contrast to the standard linear-quadratic framework studied by Hansen and Sargent (2008),

the worst-case shocks do not have an explicit representation. Still, the intuition about how they

deliver robust policies is easily provided. Namely, the worst-case shocks produce adverse effects

on the economy by distorting the behavior of the private sector. Then a robust policy provides

17See appendix A.4 for details.
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insurance against such an adverse scenario. In fact, the numerical results will show that greater

robustness is associated with greater inflation and output volatility.

The state vector is

st = (ut, r
n
t , πt−1,m1t−1,m2t−1) ⊂ R5.

It includes the exogenous shocks (ut, r
n
t ), last period’s inflation rate πt−1 that appears in

the Phillips curve (2) due to indexation in price setting, and last period’s Lagrange multipliers

(m1t−1,m2t−1) that represent “promises”to be kept from past policy commitments.

The law of motion

st+1 = g(st, ŷ (st) , εjt+1),

describes how the future state of the economy unfolds. The future state st+1 depends on the

current state st and on current policy ŷ (st), which are known to both the policymaker and the

private sector. It also depends on future shock innovations εjt+1, which are unknown.

Based on the current choice of policy, the private sector forms expectations about future

policy decisions. Therefore, associated with the response function, there is an expectations

function that describes how such expectations are formed.

The expectations function is

Êtŷt+1 =

∫
ŷ (g(st, ŷ (st) , εjt+1)) f (εjt+1) d (εjt+1) ,

where f (·) is a probability density function of the shock innovations εjt+1 that buffet the economy.

The expectations about future policy decisions are formed over the current choice of policy, which,

in turn, includes the worst-case shocks. It follows that the worst-case shocks distort private-sector

expectations. The choice of policy is then robust to distorted expectations, as a result of model

misspecification.
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Detection error Mean Std. dev. Frequency∗ Consumption
probability: x π i x π i i = 0 loss

50 0.0 0.2 3.6 1.2 1.9 2.4 3.7 0.28
40 0.0 0.3 3.7 1.3 2.3 2.7 5.6 0.31
30 0.0 0.5 3.9 1.5 2.8 3.1 7.7 0.36
29 0.0 0.9 4.3 1.6 2.9 3.2 7.0 0.37

Notes: Annualized percent values unless indicated as follows: ∗ quarterly values

Table 2: Effects of model misspecification under optimal commitment

Based on the above considerations, the following definition is proposed:

Definition 1 (SRCE-OC) Assume σεj ≥ 0 for j = u, r and Θ ≥ 0. A “stochastic robust-

control equilibrium” under “optimal commitment” is a response function ŷ (st) that satisfies

equilibrium conditions (2), (3) and (13)-(17) shown in appendix A.4.

4.2 Results under optimal commitment

Using the baseline calibration discussed in the previous section, table 2 reports the benchmark

outcome achieved by the optimal commitment. In terms of the outcome, a key factor is the

probability of making a model detection error, p (Θ). The first column lists values of p (Θ). The

second column reports for each value of p (Θ) the long-run average values of the output gap, the

inflation rate, and the nominal interest rate (x, π, i). The third column reports the corresponding

standard deviations.18 The fourth column reports the expected frequency of hitting the ZLB (the

duration of such episodes is roughly 2 quarters). The final column reports the consumption loss

associated with inflation and output volatility.

When model misspecification is ignored, a p (Θ) of 50 percent implies that the OIR is only 0.2

percent annually. In addition, the policy rate is expected to hit the ZLB less than 4 percent of

the time and to stay there for only two consecutive quarters. Allowing for model misspecification,

18The reported values summarize the long-run distribution under optimal commitment shown in figure 1, which
is obtained by assembling 105 stochastic simulations in period T , for T large. This distribution “piles up”at the
ZLB. In contrast, the distributions under limited commitment (not reported) do not pile up, because the policy
rate is not expected to hit the ZLB, as explained in the text.
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however, the ZLB is encountered more frequently, and with greater costs in terms of inflation

and output volatility. When extreme model misspecification is taken into account, a p (Θ) of 29

percent implies that the policy rate is expected to hit the ZLB as often as 7 percent of the time.

Still, even allowing for extreme model misspecification, the OIR rises only to 0.9 percent.19

Overall, greater robustness to model misspecification argues for a higher OIR in the presence

of the ZLB. But it alone does not overturn the basic result that if there is full commitment to

future policies on the part of the planner, the OIR is very low. Further, this result is very robust

to model misspecification.

5 The value of commitment

This section departs from the assumption that there is full commitment to a plan for all future

policy decisions, and proceeds to characterize the outcome under limited commitment. Again,

the equilibrium concept is defined before illustrating the results. If policy is re-optimized each

period, the OIR is much higher, and may even be extremely high when accounting for model

misspecification. This suggests that a discretionary policymaker is willing to tolerate a very large

inflation bias to avoid hitting the ZLB. But if policy decisions follow a version of the Taylor rule

that depends on the past level of the policy rate, the inflation bias is eliminated at very low cost

in terms of welfare for the representative household.

5.1 Equilibrium under limited commitment

To solve problem (2)-(8) we can write a Lagrangian and derive a system of equilibrium condi-

tions.20 Again, the solution does not have an explicit representation, thus only numerical results

are available. Before reporting the results, we explain the main differences in the equilibrium

19It is not possible to consider detection error probabilities any lower than 29 percent. When the detection
error probability is lowered very little from 30 to 29 percent, the OIR rises sharply from 0.5 to 0.9 percent. But
if expectations are distorted any further, inflation becomes unanchored and the economy no longer reverts to a
stable equilibrium.
20See appendix A.5 for details.
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concept relative to the optimal commitment.

The response function becomes

ŷ (st) = (πt, xt, it,m1t,m2t,m3t, w1t, w2t) ⊂ R8,

which also includes the Lagrange multiplier on Taylor rule (8), m3t, only if policy-rate decisions

follow the Taylor rule. Recall that the rule empowers the government by providing a systematic

character to its policy decisions. Thus, committing to the rule can improve the outcome relative

to that achieved by a discretionary optimization.

At the same time, the state vector becomes

st = (ut, r
n
t , πt−1, it−1) ⊂ R4,

which no longer includes last period’s Lagrange multipliers, because the discretionary government

chooses policies each period without making any commitment about future policy decisions. But

now the state vector includes last period’s nominal interest rate that appears in Taylor rule

(8) due to inertia in policy-rate decisions, only if these decisions follow the Taylor rule. By

committing to such an inertial rule, even though policy decisions are made afresh each period,

the government can still generate expectations about the future path of policy that reinforce

the direct effects of its policy actions on the economy. To the extent that the rule implies a

mechanism to significantly shape expectations in a desirable way, committing to the rule can

greatly mitigate the adverse effects associated with the ZLB, as the numerical results will show.

Based on the above considerations, the following definition is proposed:

Definition 2 (SRCE-LC) Assume σεj ≥ 0 for j = u, r and Θ ≥ 0. A “stochastic robust-

control equilibrium”under “limited commitment”is a response function ŷ (st) that satisfies equi-

librium conditions (2), (3), (8) and (19)-(23) shown in appendix A.5.
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Detection error Mean Std. dev. Frequency∗ Consumption
probability: x π i x π i i = 0 loss

50 0.1 13.4 16.8 1.9 2.3 3.3 0.0 0.74
40 0.2 14.0 17.5 2.0 2.6 3.5 0.0 0.80
30 0.4 14.9 18.4 2.2 2.9 3.8 0.0 0.89
20 1.4 16.7 20.2 2.3 3.2 4.0 0.0 1.06

Notes: Annualized percent values unless indicated as follows: ∗ quarterly values

Table 3: Effects of model misspecification under optimal discretionary policy

5.2 Results under limited commitment

The results reported in the previous section indicate that, even allowing for extreme model

misspecification, the optimal policy under full commitment can to a large extent offset the

adverse effects caused by the existence of the ZLB.

Using the baseline calibration discussed above, table 3 reports the outcome under the optimal

discretionary policy. When model misspecification is ignored, a p (Θ) of 50 percent implies that

the OIR rises markedly to 13.4 percent annually, which is so high that the policy rate is no

longer expected to hit the ZLB. Allowing for model misspecification, however, the OIR rises even

further, and with greater costs in terms of inflation and output volatility. But the policy rate is

still not expected to hit the ZLB. When extreme model misspecification is taken into account, a

p (Θ) of 20 percent implies that the OIR rises as high as 16.7 percent.

This raises the question, to what extent can commitment to a simple policy rule such as

Taylor rule (8) help mitigate the adverse effects of the ZLB? In terms of the outcome under the

rule, a key factor is the response coeffi cient on the past level of the policy rate, φi. Table 4

reports the outcomes for different values of φi with no model misspecification in the top panel

and extreme model misspecification in the bottom panel. Committing to the standard Taylor

rule that responds only to current values of inflation and the output gap in deviation from their

goals (φi equal to zero), the OIR is somewhat lower than the value of the optimal discretionary

policy. But allowing the Taylor rule to respond also to the past level of the policy rate, the

OIR declines even further, and may even fall all the way to the value achieved by the optimal
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Policy rate Mean Std. dev. Frequency∗ Consumption
inertia φi: x π i x π i i = 0 loss

No model misspecification (detection error probability of 50%)
0 0.1 8.0 11.5 0.9 1.9 2.6 0.0 0.46
1 0.0 4.5 8.0 1.0 1.4 1.8 0.0 0.32
2 0.0 3.0 6.5 1.2 1.3 1.4 0.0 0.29
3 0.0 2.0 5.5 1.5 1.3 1.1 0.0 0.28
4 0.0 1.0 4.5 1.6 1.3 1.0 0.0 0.28
5 0.0 0.5 4.0 1.7 1.3 0.8 0.0 0.28
6 0.0 0.2 3.7 1.8 1.4 0.7 0.0 0.29

Extreme model misspecification (detection error probability of 20%)
0 0.2 9.8 13.2 1.6 2.2 3.0 0.0 0.57
1 0.1 6.0 9.5 2.0 1.7 2.1 0.0 0.39
2 0.1 4.0 7.5 2.4 1.5 1.7 0.0 0.33
3 0.1 3.0 6.5 2.8 1.4 1.4 0.0 0.32
4 0.1 2.0 5.5 3.0 1.4 1.2 0.0 0.32
5 0.0 1.5 5.0 3.1 1.4 1.0 0.0 0.33
6 0.0 0.9 4.4 3.3 1.4 0.9 0.0 0.33

Notes: Annualized percent values unless indicated as follows: ∗ quarterly values. A φi equal
to 6 lowers the OIR to the value achieved by the optimal commitment (table 2).

Table 4: Effects of inertia in the Taylor rule

commitment if the degree of inertia in policy-rate decisions is suffi ciently high (φi equal to 6).

5.3 Discussion

When the government commits to such an inertial Taylor rule, it promises to adjust the policy

rate more gradually in response to any deviation of inflation and output from their goals. Greater

inertia in policy-rate decisions leads to less variability of the policy rate, which explains why the

OIR tends to fall with more inertia in the Taylor rule (table 4). Importantly though, commitment

to the inertial Taylor rule still does not imply a mechanism to create inflationary expectations

as strong as the optimal commitment. Thus, a deflationary spiral still could not be avoided once

the ZLB has been reached, and weakness in the economy puts downward pressure on inflation.

Under the inertial Taylor rule, the government must “stay away”from the ZLB, which is feasible

to the extent that the policy rate becomes less variable than under the optimal commitment.
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There is a sense in which, therefore, the policy prescriptions under commitment and discretion

are opposite to each other. The prescriptions differ in terms of what precaution should be taken

against the ZLB. On one side, the government that fully commits, thanks to its strong ability to

generate expectations that reinforce the direct effects of its policies, should not shy away from

the ZLB, but should instead “embrace” it. As shown above, under the optimal commitment,

the policy rate is expected to hit the ZLB as often as 8 percent of the time (table 2). On the

other side, however, the discretionary government, which does not possess that same ability

to shape expectations, must have a long-run inflation goal that is high enough to avoid any

possible encounter with the ZLB (table 3). In the event of any such encounter, the discretionary

government would not be able to create inflationary expectation as effectively as to prevent the

economy from falling into a deflationary spiral. Therefore, under the optimal discretionary policy,

the ZLB leads to a chronic inflation bias.

Still, commitment to the inertial Taylor rule eliminates the inflation bias of discretionary

policy caused by the existence of the ZLB. In addition, the outcome under this rule is very

close to fully optimal in terms of welfare for the representative household. Table 5 reports the

consumption loss associated with inflation and output volatility under the various policy regimes

discussed above. This table shows that if the government commits to the inertial Taylor rule,

the representative household foregoes only 0.01 percent of consumption (each period) relative to

what could be achieved by the optimal commitment. Following such a rule, therefore, eliminates

the inflation bias at very low cost in terms of welfare for the representative household. The

table also shows that the representative household gains 0.17 percent of consumption relative to

what could be achieved under the standard Taylor rule, and gains as much as 0.45 percent of

consumption relative to what could be achieved under optimal discretionary policy.

Based on these results, there is little to gain in welfare terms by switching from a simple policy

such as the inertial Taylor rule to more sophisticated policies. Eggertsson and Woodford (2003)

show, in a similar model, that price-level targeting polices perform very well in the presence of

the ZLB. In fact, policies that target the price level are closely related to the inertial Taylor
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Policy regime Consumption loss
Difference from optimal commitment

Inertial Taylor rule (φi equal to 6) 0.01
Standard Taylor rule (φi equal to zero) 0.18
Optimal discretionary policy 0.46

Note: Annualized percent values

Table 5: Welfare under policy regimes

rule discussed above. Both policies cause inflation to rise above the long-run goal following

an episode in which the ZLB constrains policy. Price-level targeting policies, however, imply a

stronger direct mechanism to create inflationary expectations. Nonetheless, many central bankers

express skepticism about price-level targeting polices, as discussed by Walsh (2009).

The presence of a fairly high degree of (endogenous) inflation persistence in the Phillips curve

is key in generating the very large inflation bias found in this paper, as opposed to the deflation

bias emphasized in Eggertsson (2006) and Adam and Billi (2007). Inflation persistence fuels a

deflationary spiral once the ZLB has been reached, and weakness in the economy puts downward

pressure on inflation. The results reported above indicate that, to avoid hitting the ZLB, the

discretionary government is willing to tolerate an inflation bias of 15.8 percent annually, after

accounting for extreme model misspecification with the robust-control approach of Hansen and

Sargent (2008). Importantly, this approach provides broader insurance against a significantly

more adverse macroeconomic climate than experienced over the past two decades, as argued by

Williams (2009).21

Recall that the classic inflation bias of discretionary policy, shown by Kydland and Prescott

(1977) and Barro and Gordon (1983), was dismissed from the analysis by positing an output

subsidy that offsets the distortions from market power, so to facilitate comparison with past

research on the ZLB. Eggertsson (2006) argues that such an assumption does not seem grossly at

odds with the evidence of the great disinflation since the 1980s in most major economies. For the

21After accounting for model misspecification, the inflation bias reported in this paper is robust to lowering the
steady-state real interest rate to 1.0 percent. It is also robust to increasing the standard deviation of the natural
rate of interest shock by 50 percent. And it is robust to increasing such a shock’s first-order autocorrelation
coeffi cient to 0.9, which encompasses the “Great Recession”-style shock as argued by Levin et al. (2010).
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sake of argument, however, we can consider the implications of introducing the classic inflation

bias into the model. The obvious consequence is that the inflation bias found in this paper, as

well as the deflation bias shown in Eggertsson (2006) and Adam and Billi (2007), would tend to

disappear. A very large classic inflation bias of discretionary policy would imply ample room to

lower nominal interest rates in response to a bad shock before running against the ZLB.

To the extent that governments will succeed in keeping inflation low, however, the presence

of the ZLB poses a serious challenge for the conduct of policy in a low-inflation environment.

Still, the analysis in this paper sheds light on how to overcome such a challenge with a simple

policy, like the inertial Taylor rule.

6 Conclusions

Shedding light on recent proposals directed at major central banks to raise their long-run inflation

goals higher than 2 percent, this paper studies the optimal inflation goal for the United States in

a standard model for policy analysis, where the only policy instrument is a short-term nominal

interest rate that may occasionally run against the ZLB.

The analysis suggests that if governments cannot make credible commitments about future

policy decisions, a 2 percent long-run inflation goal may provide inadequate insurance against

the ZLB. In contrast, if governments can shape expectations about the future path of policy in

a way that mitigates the adverse effects of the ZLB, which could be achieved by committing to

follow an inertial Taylor rule, the desirability of long-run inflation goals as high as 2 percent is

much less clear.

The analysis abstracted from other policy options that could help counter the effects of the

ZLB in a low-inflation environment. Since the economic tumult of the past few years, a number of

tools other than short-term nominal interest rates have been put to use, such as deficit spending

and purchases of various private assets. The analysis clarifies why governments aggressively

used alternative policy measures to avoid deflation and the ZLB. The analysis suggests that a
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discretionary policymaker tames so much a deflationary spiral that she is willing to tolerate a very

large inflation bias, assuming she has no access to any alternative policy instruments. Further

study is needed to investigate the effectiveness of alternative policy measures aimed at delivering

additional macroeconomic stimulus when short-term nominal interest rates are constrained by

the ZLB.

A Appendix

A.1 Numerical procedure

The state vector s is discretized into a grid of interpolation nodes {sn ∈ s|n = 1, ..., N}. If the

state is not on this grid, the response function ŷ (s) is evaluated with multilinear interpolation.

Because the shock innovations εj are normally distributed, the expectations function Êŷ+1 is

evaluated accurately and effi ciently with Gaussian-Hermite quadrature {εm ∈ εj|m = 1, ...,M}

as in chapter 7 of Judd (1998). Quadrature-based integration is accurate as the integrands to be

evaluated are smooth. The distributions of inflation and the output gap are smooth even when

allowing for extreme model misspecification, as figure 1 shows. In addition, derivatives of the

expectations function ∂Êŷ+1/∂ŷ (s) are evaluated with a standard two-side approximation.

A fixed-point in the space of response functions is found with an iterative update rule

ŷk+1 ← ŷk + ιk
(
ŷk+1 − ŷk

)
from step k to k + 1, (9)

where ιk ∈ (0, 1] is the step size, which is chosen to achieve stability in the iterations, as in

chapter 4 of Bertsekas (1999).

The algorithm proceeds as follows:

Step 1: Assign interpolation nodes, and make an initial guess ŷ0.

Step 2: Update the state, evaluate the expectations function, and apply rule (9) to derive a
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new guess ŷ+1.

Step 3: Stop if max
n=1,...,N

∥∥ŷk+1 − ŷk∥∥ < τ , where τ > 0 is the convergence tolerance. Otherwise

repeat step 2.

The convergence tolerance τ is set to the square root of machine precision, 1.49·10−8. After the

algorithm converged, the accuracy of the solution is checked evaluating Euler-equation residuals

at an arbitrary grid {sr ∈ s|r = 1, ..., R} as in Santos (2000). The residuals are evaluated at the

interpolation nodes and also at finer grids, so to ensure that approximation error does not affect

the results.

The obvious initial guess is the linearized solution that ignores the ZLB, but experimentation

with alternative initial guesses did not lead to differences in the results.

Regarding the assignment of the interpolation nodes, the support of the exogenous shocks

covers ±4 unconditional standard deviations, which is large enough to make the ZLB bind. And

the support of the endogenous state variables is large enough to avoid erroneous extrapolation.

To cope with the curse of dimensionality, the procedure uses a sparse grid that assigns rela-

tively more nodes to the regions of the state vector where the ZLB is binding. For the baseline,

therefore, a reasonable accuracy requires M ≈ 45 and N ≈ 3.6 · 104 with a sparse grid, while a

uniformly-spaced grid would require N > 106. To achieve greater effi ciency, the procedure starts

with a coarse grid and progressively refines the grid.

A.2 Consumption loss

The expected life-time utility of the representative household, as shown in chapter 6 of Woodford

(2003), is validly approximated by

Ê0

∞∑
t=0

βtUt =
UcC

2

αθ (1 + ωθ)

(1− α) (1− αβ)
L̂, (10)
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where C is steady-state consumption; Uc > 0 is steady-state marginal utility of consumption;

and L̂ ≤ 0 is the value of objective (1), or of objective (7) with a π∗ of zero, depending on the

policy regime considered.

At the same time, a steady-state consumption loss of µ ≥ 0 causes a utility loss

Ê0

∞∑
t=0

βtUcCµ = − 1

1− βUcCµ. (11)

Then, equating the right side of (10) and (11) gives

µ = −1− β
2

αθ (1 + ωθ)

(1− α) (1− αβ)
L̂.

A.3 Detection error probabilities

First, estimate the log-likelihood ratio of a model detection error when the data originated from

the misspecified model without worst-case shocks. This ratio is

rA =
1

T

T−1∑
t=0

[
1

2
w′AtwAt − w′AtεAjt

]
,

where εAjt are normally distributed shock innovations, independent across time and cross-sectionally,

and wAt is a vector of worst-case shocks. The paths for wAt are obtained from stochastic simu-

lations based on undistorted exogenous shocks.

Second, estimate the log-likelihood ratio of a model detection error when the data originated

from the misspecified model with worst-case shocks. This ratio is

rB =
1

T

T−1∑
t=0

[
1

2
w′BtwBt + w′BtεBjt

]
,

where again εBjt are normally distributed shock innovations and wBt is a vector of worst-case

shocks. But the paths for wBt are based on distorted exogenous shocks.

Finally, assigning equal prior weights to the misspecified model with or without worst-case
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shocks, the overall detection error probability is

p (Θ) =
1

2
(pA + pB) ,

where pj = freq(rj ≤ 0) for j = A,B. See chapter 9 of Hansen and Sargent (2008) for further

details.

A.4 Equilibrium conditions under optimal commitment

The Lagrangian of problem (1)-(6) is

max
{πt,xt,it}∞t=0

min
{m1t,m2t,w1t,w2t}∞t=0

L̂ = Ê0

∞∑
t=0

βt
{
− (πt − γπt−1)2 − λx2t + Θ

(
w21t + w22t

)
(12)

+m1t [(1 + βγ) πt − γπt−1 − κxt − ut]−m1t−1πt

+m2t [−xt − ϕ (it − rnt )] +m2t−1β
−1 (xt + ϕπt)

}
subject to (4)-(6) for all t ≥ 0,

where m1t and m2t are Lagrange multipliers on (2) and (3), respectively.

The Kuhn-Tucker conditions of (12) are (2), (3) and

∂L̂/∂πt = −2 (πt − γπt−1) + (1 + βγ)m1t −m1t−1 + β−1ϕm2t−1 = 0 (13)

∂L̂/∂xt = −2λxt − κm1t −m2t + β−1m2t−1 = 0 (14)

∂L̂/∂it · it = −ϕm2t · it = 0, m2t ≥ 0, it ≥ 0 (15)

∂L̂/∂w1t = 2Θw1t − σεum1t = 0 (16)

∂L̂/∂w2t = 2Θw2t + σεrϕm2t = 0, (17)
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where (15) imposes it ≥ 0.

Therefore, the equilibrium conditions are (2), (3) and (13)-(17). Note that conditions (16)

and (17) imply w1t ≡ w2t ≡ 0 when Θ→ +∞. That is, the worst-case shocks have no effect on

policy when model misspecification is ignored.

A.5 Equilibrium conditions under limited commitment

The Lagrangian of problem (2)-(8) is

max
(πt,xt,it)

min
(m1t,m2t,m3t,w1t,w2t)

L̂ = Êt

∞∑
j=0

βj
{
− (πt+j − γπt+j−1 − (1− γ) π∗)2 (18)

− λx2t+j + Θ
(
w21t+j + w22t+j

)
+m1t+j

[
(1 + βγ) πt+j − βÊt+jπt+j+1 − γπt+j−1 − κxt+j − ut+j

]
+m2t+j

[
−xt+j + Êt+jxt+j+1 − ϕ

(
it+j − Êt+jπt+j+1 − rnt+j

)]
+m3t+j

[
−it+j + (1− φi) (rss + π∗) + φiit+j−1 + φπ (πt+j − π∗ + ω1w1t+j)

+φx (xt+j − x∗ + ω2w2t+j) + φx (xt+j − x∗ + ω2w2t+j)
]}

subject to (4)-(6) for all t ≥ 0

and {ŷ (st+j)} given for j ≥ 1,

where m1t, m2t and m3t are Lagrange multipliers on (2), (3) and (8), respectively. If policy does

not follow the Taylor rule, simply exclude m3t from the response function and it−1 from the state

vector.

The Kuhn-Tucker conditions of (18) are (2), (3), (8) and
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∂L̂/∂πt = −2 (πt − γπt−1 − (1− γ) π∗) +m1t ·
(

1 + βγ − β∂Êtπt+1/∂πt
)

+m2t ·
(
ϕ∂Êtπt+1/∂πt + ∂Êtxt+1/∂πt

)
+ φπm3t = 0 (19)

∂L̂/∂xt = −2λxt − κm1t −m2t + φxm3t = 0 (20)

∂L̂/∂it · it = (−ϕm2t −m3t) · it = 0, ϕm2t +m3t ≥ 0, it ≥ 0 (21)

∂L̂/∂w1t = 2Θw1t − σεum1t + ω1φπm3t = 0 (22)

∂L̂/∂w2t = 2Θw2t + σεrϕm2t + ω2φxm3t = 0, (23)

where (21) imposes it ≥ 0.

Therefore, the equilibrium conditions are (2), (3), (8) and (19)-(23). Note that conditions

(22) and (23) imply w1t ≡ w2t ≡ 0 when Θ→ +∞. That is, the worst-case shocks have no effect

on policy when model misspecification is ignored.
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Figure 1: Long-run distribution under optimal commitment
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